Non-thin rank jumps for double elliptic K3 surfaces

dc.contributor.authorPasten, Hector
dc.contributor.authorSalgado, Cecilia
dc.date.accessioned2025-01-20T16:14:29Z
dc.date.available2025-01-20T16:14:29Z
dc.date.issued2024
dc.description.abstractFor an elliptic surface pi:X -> P1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pi :X\rightarrow \mathbb {P}<^>1$$\end{document} defined over a number field K, a theorem of Silverman shows that for all but finitely many fibres above K-rational points, the resulting elliptic curve over K has Mordell-Weil rank at least as large as the rank of the group of sections of pi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pi $$\end{document}. When X is a K3 surface with two distinct elliptic fibrations, we show that the set of K-rational points of P1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {P}<^>1$$\end{document} for which this rank inequality is strict, is not a thin set, under certain hypothesis on the fibrations. Our results provide one of the first cases of this phenomenon beyond that of rational elliptic surfaces.
dc.fuente.origenWOS
dc.identifier.doi10.1007/s00229-024-01554-2
dc.identifier.eissn1432-1785
dc.identifier.issn0025-2611
dc.identifier.urihttps://doi.org/10.1007/s00229-024-01554-2
dc.identifier.urihttps://repositorio.uc.cl/handle/11534/90443
dc.identifier.wosidWOS:001257451700001
dc.issue.numero3-4
dc.language.isoen
dc.pagina.final781
dc.pagina.inicio771
dc.revistaManuscripta mathematica
dc.rightsacceso restringido
dc.subjectPrimary 14J27
dc.subject14J28
dc.subjectSecondary 11G05
dc.subject14D10
dc.titleNon-thin rank jumps for double elliptic K3 surfaces
dc.typeartículo
dc.volumen175
sipa.indexWOS
sipa.trazabilidadWOS;2025-01-12
Files