Transcriptional Signatures and Network-Based Approaches Identified Master Regulators Transcription Factors Involved in Experimental Periodontitis Pathogenesis

dc.contributor.authorVicencio, Emiliano
dc.contributor.authorNunez-Belmar, Josefa
dc.contributor.authorCardenas, Juan P.
dc.contributor.authorCortes, Bastian I.
dc.contributor.authorMartin, Alberto J. M.
dc.contributor.authorMaracaja-Coutinho, Vinicius
dc.contributor.authorRojas, Adolfo
dc.contributor.authorCafferata, Emilio A.
dc.contributor.authorGonzalez-Osuna, Luis
dc.contributor.authorVernal, Rolando
dc.contributor.authorCortez, Cristian
dc.date.accessioned2025-01-20T17:18:23Z
dc.date.available2025-01-20T17:18:23Z
dc.date.issued2023
dc.description.abstractPeriodontitis is a chronic inflammatory disease characterized by the progressive and irreversible destruction of the periodontium. Its aetiopathogenesis lies in the constant challenge of the dysbiotic biofilm, which triggers a deregulated immune response responsible for the disease phenotype. Although the molecular mechanisms underlying periodontitis have been extensively studied, the regulatory mechanisms at the transcriptional level remain unclear. To generate transcriptomic data, we performed RNA shotgun sequencing of the oral mucosa of periodontitis-affected mice. Since genes are not expressed in isolation during pathological processes, we disclose here the complete repertoire of differentially expressed genes (DEG) and co-expressed modules to build Gene Regulatory Networks (GRNs) and identify the Master Transcriptional Regulators of periodontitis. The transcriptional changes revealed 366 protein-coding genes and 42 non-coding genes differentially expressed and enriched in the immune response. Furthermore, we found 13 co-expression modules with different representation degrees and gene expression levels. Our GRN comprises genes from 12 gene clusters, 166 nodes, of which 33 encode Transcription Factors, and 201 connections. Finally, using these strategies, 26 master regulators of periodontitis were identified. In conclusion, combining the transcriptomic analyses with the regulatory network construction represents a powerful and efficient strategy for identifying potential periodontitis-therapeutic targets.
dc.fuente.origenWOS
dc.identifier.doi10.3390/ijms241914835
dc.identifier.eissn1422-0067
dc.identifier.issn1661-6596
dc.identifier.urihttps://doi.org/10.3390/ijms241914835
dc.identifier.urihttps://repositorio.uc.cl/handle/11534/91383
dc.identifier.wosidWOS:001145717400001
dc.issue.numero19
dc.language.isoen
dc.revistaInternational journal of molecular sciences
dc.rightsacceso restringido
dc.subjectperiodontitis
dc.subjectchronic inflammation
dc.subjectgene expression
dc.subjecttranscriptome
dc.subjectgene regulatory networks
dc.subjectmaster regulators transcription factors
dc.subject.ods03 Good Health and Well-being
dc.subject.odspa03 Salud y bienestar
dc.titleTranscriptional Signatures and Network-Based Approaches Identified Master Regulators Transcription Factors Involved in Experimental Periodontitis Pathogenesis
dc.typeartículo
dc.volumen24
sipa.indexWOS
sipa.trazabilidadWOS;2025-01-12
Files