SUPERCRITICAL PROBLEMS IN DOMAINS WITH THIN TOROIDAL HOLES
dc.contributor.author | Kim, Seunghyeok | |
dc.contributor.author | Pistoia, Angela | |
dc.date.accessioned | 2025-01-23T21:44:52Z | |
dc.date.available | 2025-01-23T21:44:52Z | |
dc.date.issued | 2014 | |
dc.description.abstract | In this paper we study the Lane-Emden-Fowler equation | |
dc.description.abstract | (P)(epsilon) {(Delta)u+vertical bar u vertical bar(q-2) u = 0 in D-epsilon,D- u = 0 on partial derivative D-epsilon. | |
dc.description.abstract | Here D-c = D\ {x epsilon D : dist (x, Gamma(l) ) <= epsilon }, D is a smooth bounded domain in R-N, Gamma(l) is an l-dimensional closed manifold such that Gamma l subset of D with 1 <= l <= N - 3 and q = 2(N - l)/ N-l-2. We prove that, under some symmetry assumptions, the number of sign changing solutions to (P)(epsilon), increases as goes to zero. | |
dc.description.funder | Fondecyt, Chile | |
dc.fuente.origen | WOS | |
dc.identifier.doi | 10.3934/dcds.2014.34.4671 | |
dc.identifier.eissn | 1553-5231 | |
dc.identifier.issn | 1078-0947 | |
dc.identifier.uri | https://doi.org/10.3934/dcds.2014.34.4671 | |
dc.identifier.uri | https://repositorio.uc.cl/handle/11534/101701 | |
dc.identifier.wosid | WOS:000336668200014 | |
dc.issue.numero | 11 | |
dc.language.iso | en | |
dc.pagina.final | 4688 | |
dc.pagina.inicio | 4671 | |
dc.revista | Discrete and continuous dynamical systems | |
dc.rights | acceso restringido | |
dc.subject | Supercritical problem | |
dc.subject | concentration on l-dimensional manifolds | |
dc.title | SUPERCRITICAL PROBLEMS IN DOMAINS WITH THIN TOROIDAL HOLES | |
dc.type | artículo | |
dc.volumen | 34 | |
sipa.index | WOS | |
sipa.trazabilidad | WOS;2025-01-12 |