A Variational Formulation for Dirac Operators in Bounded Domains. Applications to Spectral Geometric Inequalities
| dc.contributor.author | Antunes, Pedro R. S. | |
| dc.contributor.author | Benguria, Rafael D. | |
| dc.contributor.author | Lotoreichik, Vladimir | |
| dc.contributor.author | Ourmieres-Bonafos, Thomas | |
| dc.date.accessioned | 2025-01-20T22:14:21Z | |
| dc.date.available | 2025-01-20T22:14:21Z | |
| dc.date.issued | 2021 | |
| dc.description.abstract | We investigate spectral features of the Dirac operator with infinite mass boundary conditions in a smooth bounded domain of R-2. Motivated by spectral geometric inequalities, we prove a non-linear variational formulation to characterize its principal eigenvalue. This characterization turns out to be very robust and allows for a simple proof of a Szego type inequality as well as a new reformulation of a Faber-Krahn type inequality for this operator. The paper is complemented with strong numerical evidences supporting the existence of a Faber-Krahn type inequality. | |
| dc.description.funder | FONDECYT (Chile) | |
| dc.fuente.origen | WOS | |
| dc.identifier.doi | 10.1007/s00220-021-03959-6 | |
| dc.identifier.eissn | 1432-0916 | |
| dc.identifier.issn | 0010-3616 | |
| dc.identifier.uri | https://doi.org/10.1007/s00220-021-03959-6 | |
| dc.identifier.uri | https://repositorio.uc.cl/handle/11534/94478 | |
| dc.identifier.wosid | WOS:000676065800001 | |
| dc.issue.numero | 2 | |
| dc.language.iso | en | |
| dc.pagina.final | 818 | |
| dc.pagina.inicio | 781 | |
| dc.revista | Communications in mathematical physics | |
| dc.rights | acceso restringido | |
| dc.title | A Variational Formulation for Dirac Operators in Bounded Domains. Applications to Spectral Geometric Inequalities | |
| dc.type | artículo | |
| dc.volumen | 386 | |
| sipa.index | WOS | |
| sipa.trazabilidad | WOS;2025-01-12 |
