A Variational Formulation for Dirac Operators in Bounded Domains. Applications to Spectral Geometric Inequalities

dc.contributor.authorAntunes, Pedro R. S.
dc.contributor.authorBenguria, Rafael D.
dc.contributor.authorLotoreichik, Vladimir
dc.contributor.authorOurmieres-Bonafos, Thomas
dc.date.accessioned2025-01-20T22:14:21Z
dc.date.available2025-01-20T22:14:21Z
dc.date.issued2021
dc.description.abstractWe investigate spectral features of the Dirac operator with infinite mass boundary conditions in a smooth bounded domain of R-2. Motivated by spectral geometric inequalities, we prove a non-linear variational formulation to characterize its principal eigenvalue. This characterization turns out to be very robust and allows for a simple proof of a Szego type inequality as well as a new reformulation of a Faber-Krahn type inequality for this operator. The paper is complemented with strong numerical evidences supporting the existence of a Faber-Krahn type inequality.
dc.description.funderFONDECYT (Chile)
dc.fuente.origenWOS
dc.identifier.doi10.1007/s00220-021-03959-6
dc.identifier.eissn1432-0916
dc.identifier.issn0010-3616
dc.identifier.urihttps://doi.org/10.1007/s00220-021-03959-6
dc.identifier.urihttps://repositorio.uc.cl/handle/11534/94478
dc.identifier.wosidWOS:000676065800001
dc.issue.numero2
dc.language.isoen
dc.pagina.final818
dc.pagina.inicio781
dc.revistaCommunications in mathematical physics
dc.rightsacceso restringido
dc.titleA Variational Formulation for Dirac Operators in Bounded Domains. Applications to Spectral Geometric Inequalities
dc.typeartículo
dc.volumen386
sipa.indexWOS
sipa.trazabilidadWOS;2025-01-12
Files