Can Feedback based on Predictive Data Improve Learners' Passing Rates in MOOCs? A Preliminary Analysis
dc.catalogador | pva | |
dc.contributor.author | Pérez Sanagustín, Mar | |
dc.contributor.author | Pérez Álvarez, Ronald Antonio | |
dc.contributor.author | Maldonado Mahauad, Jorge Javier | |
dc.contributor.author | Villalobos, Esteban | |
dc.contributor.author | Hilliger, Isabel | |
dc.contributor.author | Hernández Correa, Josefina María | |
dc.contributor.author | Sapunar Opazo, Diego Andrés | |
dc.contributor.author | Moreno-Marcos, Pedro Manuel | |
dc.contributor.author | Muñoz-Merino, Pedro J. | |
dc.contributor.author | Delgado Kloos, Carlos | |
dc.contributor.author | Imaz, Jon | |
dc.date.accessioned | 2025-03-13T20:46:17Z | |
dc.date.available | 2025-03-13T20:46:17Z | |
dc.date.issued | 2021 | |
dc.description.abstract | This work in progress paper investigates if timely feedback increases learners' passing rate in a MOOC. An experiment conducted with 2,421 learners in the Coursera platform tests if weekly messages sent to groups of learners with the same probability of dropping out the course can improve retention. These messages can contain information about: (1) the average time spent in the course, or (2) the average time per learning session, or (3) the exercises performed, or (4) the video-lectures completed. Preliminary results show that the completion rate increased 12% with the intervention compared with data from 1,445 learners that participated in the same course in a previous session without the intervention. We discuss the limitations of these preliminary results and the future research derived from them. | |
dc.format.extent | 4 páginas | |
dc.fuente.origen | ORCID | |
dc.identifier.doi | 10.1145/3430895.3460991 | |
dc.identifier.isbn | 978-145038215-1 | |
dc.identifier.scopusid | SCOPUS_ID:85108120489 | |
dc.identifier.uri | https://doi.org/10.1145/3430895.3460991 | |
dc.identifier.uri | http://www.scopus.com/inward/record.url?eid=2-s2.0-85108120489&partnerID=MN8TOARS | |
dc.identifier.uri | https://repositorio.uc.cl/handle/11534/102590 | |
dc.information.autoruc | Escuela de Ingeniería; Pérez Sanagustín, Mar; 0000-0001-9854-9963; 1015143 | |
dc.information.autoruc | Escuela de Ingeniería; Pérez Álvarez, Ronald Antonio; 0000-0002-5544-0770; 1031026 | |
dc.information.autoruc | Escuela de Ingeniería; Maldonado Mahauad, Jorge Javier; 0000-0003-1953-390X; 1020263 | |
dc.information.autoruc | Escuela de Ingeniería; Villalobos, Esteban; S/I; 232411 | |
dc.information.autoruc | Escuela de Ingeniería; Hilliger, Isabel; 0000-0001-5270-7655; 141681 | |
dc.information.autoruc | Escuela de Ingeniería; Hernández Correa, Josefina María; 0000-0002-2422-3634; 170540 | |
dc.information.autoruc | Escuela de Ingeniería; Sapunar Opazo, Diego Andrés; S/I; 232414 | |
dc.language.iso | en | |
dc.nota.acceso | contenido parcial | |
dc.pagina.final | 342 | |
dc.pagina.inicio | 339 | |
dc.publisher | Association for Computing Machinery, Inc. | |
dc.relation.ispartof | 8th Annual ACM Conference on Learning at Scale, L@S 2021 | |
dc.revista | L@S 2021 - Proceedings of the 8th ACM Conference on Learning @ Scale | |
dc.rights | acceso restringido | |
dc.subject | MOOC | |
dc.subject | Self-regulated learning | |
dc.subject | Feedback | |
dc.subject | Prediction | |
dc.subject.ddc | 620 | |
dc.subject.dewey | Ingeniería | es_ES |
dc.title | Can Feedback based on Predictive Data Improve Learners' Passing Rates in MOOCs? A Preliminary Analysis | |
dc.type | comunicación de congreso | |
sipa.codpersvinculados | 1015143 | |
sipa.codpersvinculados | 1031026 | |
sipa.codpersvinculados | 1020263 | |
sipa.codpersvinculados | 232411 | |
sipa.codpersvinculados | 141681 | |
sipa.codpersvinculados | 170540 | |
sipa.codpersvinculados | 232414 | |
sipa.trazabilidad | ORCID;2025-03-03 |