Asymptotic Density of Eigenvalue Clusters for the Perturbed Landau Hamiltonian

dc.contributor.authorPushnitski, Alexander
dc.contributor.authorRaikov, Georgi
dc.contributor.authorVillegas-Blas, Carlos
dc.date.accessioned2025-01-24T00:10:06Z
dc.date.available2025-01-24T00:10:06Z
dc.date.issued2013
dc.description.abstractWe consider the Landau Hamiltonian (i.e. the 2D Schrodinger operator with constant magnetic field) perturbed by an electric potential V which decays sufficiently fast at infinity. The spectrum of the perturbed Hamiltonian consists of clusters of eigenvalues which accumulate to the Landau levels. Applying a suitable version of the anti-Wick quantization, we investigate the asymptotic distribution of the eigenvalues within a given cluster as the number of the cluster tends to infinity. We obtain an explicit description of the asymptotic density of the eigenvalues in terms of the Radon transform of the perturbation potential V.
dc.fuente.origenWOS
dc.identifier.doi10.1007/s00220-012-1643-4
dc.identifier.issn0010-3616
dc.identifier.urihttps://doi.org/10.1007/s00220-012-1643-4
dc.identifier.urihttps://repositorio.uc.cl/handle/11534/102009
dc.identifier.wosidWOS:000318905700005
dc.issue.numero2
dc.language.isoen
dc.pagina.final453
dc.pagina.inicio425
dc.revistaCommunications in mathematical physics
dc.rightsacceso restringido
dc.titleAsymptotic Density of Eigenvalue Clusters for the Perturbed Landau Hamiltonian
dc.typeartículo
dc.volumen320
sipa.indexWOS
sipa.trazabilidadWOS;2025-01-12
Files