Asymptotic Density of Eigenvalue Clusters for the Perturbed Landau Hamiltonian
dc.contributor.author | Pushnitski, Alexander | |
dc.contributor.author | Raikov, Georgi | |
dc.contributor.author | Villegas-Blas, Carlos | |
dc.date.accessioned | 2025-01-24T00:10:06Z | |
dc.date.available | 2025-01-24T00:10:06Z | |
dc.date.issued | 2013 | |
dc.description.abstract | We consider the Landau Hamiltonian (i.e. the 2D Schrodinger operator with constant magnetic field) perturbed by an electric potential V which decays sufficiently fast at infinity. The spectrum of the perturbed Hamiltonian consists of clusters of eigenvalues which accumulate to the Landau levels. Applying a suitable version of the anti-Wick quantization, we investigate the asymptotic distribution of the eigenvalues within a given cluster as the number of the cluster tends to infinity. We obtain an explicit description of the asymptotic density of the eigenvalues in terms of the Radon transform of the perturbation potential V. | |
dc.fuente.origen | WOS | |
dc.identifier.doi | 10.1007/s00220-012-1643-4 | |
dc.identifier.issn | 0010-3616 | |
dc.identifier.uri | https://doi.org/10.1007/s00220-012-1643-4 | |
dc.identifier.uri | https://repositorio.uc.cl/handle/11534/102009 | |
dc.identifier.wosid | WOS:000318905700005 | |
dc.issue.numero | 2 | |
dc.language.iso | en | |
dc.pagina.final | 453 | |
dc.pagina.inicio | 425 | |
dc.revista | Communications in mathematical physics | |
dc.rights | acceso restringido | |
dc.title | Asymptotic Density of Eigenvalue Clusters for the Perturbed Landau Hamiltonian | |
dc.type | artículo | |
dc.volumen | 320 | |
sipa.index | WOS | |
sipa.trazabilidad | WOS;2025-01-12 |