Integrated experimental and theoretical insights into CO2 fixation: tetraazamacrocyclic catalysts in ionic liquids for cyclic carbonate formation

dc.catalogadorgrr
dc.contributor.authorHonores Sotelo, Jessica Scarlet
dc.contributor.authorQuezada, Diego
dc.contributor.authorCamarada, María B.
dc.contributor.authorRamírez Jofré, Galo
dc.contributor.authorIsaacs Casanova, Mauricio
dc.date.accessioned2025-07-01T22:03:03Z
dc.date.available2025-07-01T22:03:03Z
dc.date.issued2025
dc.description.abstractThe electrochemical cycloaddition of carbon dioxide to epoxides was investigated using tetraazamacrocyclic metal complexes as electrocatalysts in ionic liquids under mild conditions. The process was carried out in the absence of additional organic solvents, employing Ni(cyclam)Cl2 and Co(cyclam)Cl2Cl as catalysts, which facilitated the activation of CO2. The electrosynthesis was conducted in 1-butyl-3-methylimidazolium-based ionic liquids, which not only acted as solvents but also played a crucial role in promoting epoxide ring opening and stabilizing reaction intermediates. Electrochemical experiments using propylene oxide, styrene oxide, and epichlorohydrin demonstrated that the nature of the epoxide substituent significantly impacts the formation of cyclic carbonates. The highest yields were obtained when BMImBr was used as the reaction medium, while other ionic liquids such as BMImBF4 and BMImTFSI resulted in negligible conversion. Spectroelectrochemical studies provided additional insights into the reaction mechanism, confirming the role of halide anions in facilitating carbonate formation. Furthermore, density functional theory (DFT) calculations were performed to explore the interaction between Ni(cyclam) complexes and CO2. Theoretical results indicate that the trans-I isomer of [Ni(cyclam)]+ favors CO2 coordination and activation, which aligns with the experimental findings. Computational analysis also supported the importance of ionic liquid composition in stabilizing key reaction intermediates. This study highlights the potential of electrocatalytic methodologies for the sustainable conversion of CO2 into high-value chemicals, contributing to the development of greener and more efficient synthetic strategies.
dc.description.funderGerman Research Foundation
dc.fechaingreso.objetodigital2025-07-01
dc.fuente.origenSCOPUS
dc.identifier.doi10.1039/d5su00100e
dc.identifier.issn27538125
dc.identifier.scopusidSCOPUS_ID:105008032209
dc.identifier.urihttp://doi.org/10.1039/d5su00100e
dc.identifier.urihttps://repositorio.uc.cl/handle/11534/104818
dc.identifier.wosidWOS:001507275500001
dc.information.autorucEscuela de Química; Honores Sotelo, Jessica Scarlet; 0000-0003-1172-4728; 217991
dc.information.autorucEscuela de Química; Ramírez Jofré, Galo; 0000-0002-6217-4730; 191811
dc.information.autorucEscuela de Química; Isaacs Casanova, Mauricio; 0000-0003-0503-0949; 1009751
dc.language.isoen
dc.publisherRoyal Society of Chemistry
dc.revistaRSC Sustainability
dc.rightsacceso abierto
dc.rights.licenseCC BY-NC 3.0 Attribution-NonCommercial 3.0 Unported
dc.rights.urihttps://creativecommons.org/licenses/by-nc/3.0/
dc.subject.ddc510
dc.subject.deweyMatemática física y químicaes_ES
dc.subject.ods13 Climate action
dc.subject.odspa13 Acción por el clima
dc.titleIntegrated experimental and theoretical insights into CO2 fixation: tetraazamacrocyclic catalysts in ionic liquids for cyclic carbonate formation
dc.typeartículo
sipa.codpersvinculados217991
sipa.codpersvinculados191811
sipa.codpersvinculados1009751
sipa.trazabilidadSCOPUS;2025-06-22
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
d5su00100e.pdf
Size:
942.96 KB
Format:
Adobe Portable Document Format
Description: