Valence and oscillation of functions in the unit disk
dc.contributor.author | Chuaqui, Martin | |
dc.contributor.author | Stowe, Dennis | |
dc.date.accessioned | 2024-01-10T12:10:43Z | |
dc.date.available | 2024-01-10T12:10:43Z | |
dc.date.issued | 2008 | |
dc.description.abstract | We investigate the number of times that nontrivial solutions of equations u '' + p(z)u = 0 in the unit disk can vanish-or, equivalently, the number of times that solutions of S(f) = 2p(z) can attain their values-given a restriction vertical bar p(z)vertical bar < b(vertical bar z vertical bar). We establish a bound for that number when b satisfies a Nehari-type condition, identify perturbations of the condition that, allow the number to be infinite, and compare those results with their analogs for real equations phi '' + q(t)phi = 0 in (-1, 1). | |
dc.format.extent | 24 páginas | |
dc.fuente.origen | WOS | |
dc.identifier.issn | 1239-629X | |
dc.identifier.wosid | WOS:000257661000013 | |
dc.information.autoruc | Matemática;Chuaqui M;S/I;75421 | |
dc.issue.numero | 2 | |
dc.language.iso | en | |
dc.nota.acceso | contenido parcial | |
dc.pagina.final | 584 | |
dc.pagina.inicio | 561 | |
dc.publisher | SUOMALAINEN TIEDEAKATEMIA | |
dc.revista | ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA | |
dc.rights | acceso restringido | |
dc.subject | valence | |
dc.subject | oscillation | |
dc.subject | Schwarzian derivative | |
dc.title | Valence and oscillation of functions in the unit disk | |
dc.type | artículo | |
dc.volumen | 33 | |
sipa.codpersvinculados | 75421 | |
sipa.index | WOS | |
sipa.index | Scopus | |
sipa.trazabilidad | Carga SIPA;09-01-2024 |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- Valence and oscillation of functions in the unit disk.pdf
- Size:
- 2.35 KB
- Format:
- Adobe Portable Document Format
- Description: