Valence and oscillation of functions in the unit disk

dc.contributor.authorChuaqui, Martin
dc.contributor.authorStowe, Dennis
dc.date.accessioned2024-01-10T12:10:43Z
dc.date.available2024-01-10T12:10:43Z
dc.date.issued2008
dc.description.abstractWe investigate the number of times that nontrivial solutions of equations u '' + p(z)u = 0 in the unit disk can vanish-or, equivalently, the number of times that solutions of S(f) = 2p(z) can attain their values-given a restriction vertical bar p(z)vertical bar < b(vertical bar z vertical bar). We establish a bound for that number when b satisfies a Nehari-type condition, identify perturbations of the condition that, allow the number to be infinite, and compare those results with their analogs for real equations phi '' + q(t)phi = 0 in (-1, 1).
dc.format.extent24 páginas
dc.fuente.origenWOS
dc.identifier.issn1239-629X
dc.identifier.wosidWOS:000257661000013
dc.information.autorucMatemática;Chuaqui M;S/I;75421
dc.issue.numero2
dc.language.isoen
dc.nota.accesocontenido parcial
dc.pagina.final584
dc.pagina.inicio561
dc.publisherSUOMALAINEN TIEDEAKATEMIA
dc.revistaANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA
dc.rightsacceso restringido
dc.subjectvalence
dc.subjectoscillation
dc.subjectSchwarzian derivative
dc.titleValence and oscillation of functions in the unit disk
dc.typeartículo
dc.volumen33
sipa.codpersvinculados75421
sipa.indexWOS
sipa.indexScopus
sipa.trazabilidadCarga SIPA;09-01-2024
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Valence and oscillation of functions in the unit disk.pdf
Size:
2.35 KB
Format:
Adobe Portable Document Format
Description: