Fracture growth and damage zone evolution in fault-vein systems determined through scaling relations in alteration halo-bearing hydrothermal veins

dc.catalogadorjlo
dc.contributor.authorHofer Apostolidis, Karin Andrea
dc.contributor.authorCembrano Perasso, José Miguel
dc.contributor.authorBrowning, John
dc.contributor.authorPérez-Flores, Pamela
dc.contributor.authorMitchell, Thomas M.
dc.contributor.authorMeredith, Philip G.
dc.contributor.authorRojas Guzmán, Flavia Jael
dc.contributor.authorTao Xu
dc.date.accessioned2024-08-20T15:30:58Z
dc.date.available2024-08-20T15:30:58Z
dc.date.issued2024
dc.description.abstractUnderstanding how fluids flow to form halo-bearing veins is essential to assess the fundamental processes involved in fracture propagation and the formation of hydrothermal ore deposits. Haloes may mimic damage zones during fracture propagation, contributing to the identification of scaling relations between halo width and fracture displacement. In this work, we examine geometry, kinematics and mineral composition of well-exposed halo-bearing fault-vein network field samples. We studied a total of 18 veins from Iron-Oxide Copper Gold (IOCG) deposits in the Chilean Atacama Desert and from the Chinese Cathaysia tectonic block. Vein length and width and halo width were measured directly at the outcrop and later under optical microscope. We established a scaling relation, over five orders of magnitude, between halo width (HW) and vein width (VW) of the form which suggests that the majority of analyzed haloes were formed as a result of crack tip process zone damage. Such ratios and scaling relationships, apart from elucidating the physical mechanisms driving halo/damage zone formation, have potential implications for a more reliable estimation of the nature and size of ore grade variations away from high-grade mineralized veins to the relatively lower grade surrounding wall rock volumes.
dc.format.extent53 páginas
dc.fuente.origenORCID
dc.identifier.doi10.1016/j.jsg.2024.105219
dc.identifier.eissn1873-1201
dc.identifier.issn0191-8141
dc.identifier.urihttps://doi.org/10.1016/j.jsg.2024.105219
dc.identifier.urihttps://repositorio.uc.cl/handle/11534/87537
dc.identifier.wosidWOS:001301954800001
dc.information.autorucEscuela de Ingeniería; Hofer Apostolidis, Karin Andrea; S/I; 185712
dc.information.autorucEscuela de Ingeniería; Cembrano Perasso, José Miguel; 0000-0003-4247-8259; 1008585
dc.information.autorucEscuela de Ingeniería; Browning, John; 0000-0001-8022-6234; 1081089
dc.information.autorucEscuela de Ingeniería; Rojas Guzmán, Flavia Jael; S/I; 1049375
dc.language.isoen
dc.nota.accesocontenido parcial
dc.revistaJournal of Structural Geology
dc.rightsacceso restringido
dc.subjectFractures
dc.subjectFluid Flow
dc.subjectDamage zone
dc.subjectHydrothermal alteration
dc.subject.ddc550
dc.subject.deweyCiencias de la tierraes_ES
dc.subject.ods13 Climate action
dc.subject.odspa13 Acción por el clima
dc.titleFracture growth and damage zone evolution in fault-vein systems determined through scaling relations in alteration halo-bearing hydrothermal veins
dc.typepreprint
sipa.codpersvinculados185712
sipa.codpersvinculados1008585
sipa.codpersvinculados1081089
sipa.codpersvinculados1049375
sipa.trazabilidadORCID;2024-08-19
Files