Identificación eventos de splicing alternativo en situaciones de estrés salino en tomate (Solanum lycopersicum var MicroTom)
Loading...
Date
2025
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
El estrés abiótico afecta significativamente el desarrollo, la productividad y la supervivencia de las plantas, siendo el estrés salino uno de los factores más limitantes para el crecimiento de los cultivos y la calidad de los frutos en especies como el tomate. El cambio climático ha agravado este problema al expandir los suelos salinos a nivel mundial. Como respuesta adaptativa, las plantas modulan la expresión génica mediante mecanismos como el splicing alternativo (AS), un proceso post-transcripcional clave que aumenta la diversidad del transcriptoma y del proteoma.Este estudio tuvo como objetivo analizar el papel del splicing alternativo en la regulación de la arquitectura radicular en respuesta al estrés salino en tomate (Solanum lycopersicum cv. Micro-Tom). Para ello, se caracterizaron cambios fenotípicos en la radícula a los 8 días post-germinación tras un tratamiento combinado de inhibidor de AS y estrés salino (150 mM NaCl) durante una semana. Los resultados mostraron que el tratamiento combinado redujo la longitud de las raíces laterales, lo que sugiere una estrecha relación entre los eventos de AS y la modulación de la respuesta de la planta al estrés salino como mecanismo de supervivencia.Además, los datos transcriptómicos de raíces de tomate bajo estrés salino permitieron identificar genes que presentan splicing alternativo diferencial en respuesta al tratamiento. Asimismo, se identificaron categorías funcionales enriquecidas bajo condiciones salinas, destacando genes relacionados con el transporte de auxinas, los cuales fueron seleccionados como candidatos para validaciones futuras.
Abiotic stresses impact plant development, productivity, and survival, with salt stress being one of the most limiting factors for crop growth and fruit quality in species like tomato. Climate change has worsened this issue by expanding saline soils globally. As an adaptive response, plants modulate gene expression through mechanisms such as alternative splicing (AS), a key post-transcriptional process that enhances transcriptome and proteome diversity. This study aimed to analyze the role of alternative splicing in the regulation of root architecture in response to salt stress in tomato (Solanum lycopersicum cv. Micro-Tom). To address this, we characterized phenotypic changes in the radicle at 8 days postgermination after treatment with an AS inhibitor combined with salt stress (150 mM NaCl) for one week. The results showed that the combined treatment reduced lateral root length, suggesting a strong relationship between AS events and the modulation of the plant's response to salt stress as a survival mechanism. In addition, transcriptomic data from tomato roots under salt stress allowed us to identify genes undergoing differential alternative splicing in response to the treatment. Furthermore, we identified functional gene categories enriched under saline conditions, among which genes related to auxin transport were selected as candidates for validation in future studies.
Abiotic stresses impact plant development, productivity, and survival, with salt stress being one of the most limiting factors for crop growth and fruit quality in species like tomato. Climate change has worsened this issue by expanding saline soils globally. As an adaptive response, plants modulate gene expression through mechanisms such as alternative splicing (AS), a key post-transcriptional process that enhances transcriptome and proteome diversity. This study aimed to analyze the role of alternative splicing in the regulation of root architecture in response to salt stress in tomato (Solanum lycopersicum cv. Micro-Tom). To address this, we characterized phenotypic changes in the radicle at 8 days postgermination after treatment with an AS inhibitor combined with salt stress (150 mM NaCl) for one week. The results showed that the combined treatment reduced lateral root length, suggesting a strong relationship between AS events and the modulation of the plant's response to salt stress as a survival mechanism. In addition, transcriptomic data from tomato roots under salt stress allowed us to identify genes undergoing differential alternative splicing in response to the treatment. Furthermore, we identified functional gene categories enriched under saline conditions, among which genes related to auxin transport were selected as candidates for validation in future studies.
Description
Tesis (Magíster en Fisiología y Producción Vegetal)--Pontificia Universidad Católica de Chile, 2025.
Keywords
Abiotic stress, Root architecture, Transcriptomic analysis, Gene regulation
