Effect of O<sub>2</sub> pressure on the hydrothermal growth of CuO hierarchical microstructures: characterization and hydrogen adsorption capacity
No Thumbnail Available
Date
2017
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
In the present study, the effect of injected O-2 pressure to a hydrothermal reactor on the growth, morphology, structure and hydrogen adsorption properties of CuO hierarchical microstructures was investigated. The synthesis consisted of a simple one-step hydrothermal reaction using copper chloride and aqueous ammonia. Hydrothermal reactions were carried at 200 degrees C at reaction times of 1 and 12 h injecting at the beginning of the synthesis O-2 pressures of 0, 30 or 60 bar. The samples were characterized by SEM and EDS for morphological and chemical information, XRD for determination of crystalline phases, lattice parameters and crystallinity grade using Rietveld refinement. Specific surface area was determined using BET method from nitrogen adsorption/desorption isotherm measurements. Hydrogen adsorption capacities at 20 degrees C were studied for key samples using the quartz crystal microbalance technique under gas exposure pressures between 3 and 100 Torr. It was found that the samples were of monoclinic CuO phase consisting mainly of sphere-like hierarchical microstructures of different average sizes assembled by sheets. The effect of the reactor pressure was mainly seen on average size of the CuO microstructures due to changes in the growth rate, specifically during the first stages of the hydrothermal reaction. Reactor pressure induced changes on the crystallinity of the samples were determined but no correlation was stated. Hydrogen adsorption capacities of studied samples measured at 100 Torr ranged from 0.27 to 0.6 wt%, indicating a good performance as compared with other reported values. Oxygen deficiency in CuO can influence on the hydrogen adsorption capacity.
Description
Keywords
hydrothermal, CuO microstructures, pressure effect, H-2 adsorption, rietveld refinement