The effect of quadrature rules on finite element solutions of Maxwell variational problems Consistency estimates on meshes with straight and curved elements

dc.contributor.authorAylwin, Ruben
dc.contributor.authorJerez-Hanckes, Carlos
dc.date.accessioned2025-01-20T23:52:51Z
dc.date.available2025-01-20T23:52:51Z
dc.date.issued2021
dc.description.abstractWe study the effects of numerical quadrature rules on error convergence rates when solving Maxwell-type variational problems via the curl-conforming or edge finite element method. A complete a priori error analysis for the case of bounded polygonal and curved domains with non-homogeneous coefficients is provided. We detail sufficient conditions with respect to mesh refinement and precision for the quadrature rules so as to guarantee convergence rates following that of exact numerical integration. On curved domains, we isolate the error contribution of numerical quadrature rules.
dc.fuente.origenWOS
dc.identifier.doi10.1007/s00211-021-01186-8
dc.identifier.eissn0945-3245
dc.identifier.issn0029-599X
dc.identifier.urihttps://doi.org/10.1007/s00211-021-01186-8
dc.identifier.urihttps://repositorio.uc.cl/handle/11534/94928
dc.identifier.wosidWOS:000622655300001
dc.issue.numero4
dc.language.isoen
dc.pagina.final936
dc.pagina.inicio903
dc.revistaNumerische mathematik
dc.rightsacceso restringido
dc.subject35Q61
dc.subject65N30
dc.subject65N12
dc.titleThe effect of quadrature rules on finite element solutions of Maxwell variational problems Consistency estimates on meshes with straight and curved elements
dc.typeartículo
dc.volumen147
sipa.indexWOS
sipa.trazabilidadWOS;2025-01-12
Files