Experimental and numerical investigation of sliding wear of heat-treated 316L stainless steel additively manufactured

dc.contributor.authorBarrionuevo, German Omar
dc.contributor.authorCalvopina, Hector
dc.contributor.authorDebut, Alexis
dc.contributor.authorPerez-Salinas, Cristian
dc.date.accessioned2025-01-20T16:06:18Z
dc.date.available2025-01-20T16:06:18Z
dc.date.issued2024
dc.description.abstractAdditive manufacturing (AM) of metal alloys using a laser as a machine tool is reaching levels of precision comparable to conventional processing methods. Stainless steel specimens fabricated by AM have been extensively evaluated in load-bearing applications, showing an adequate response concerning mechanical strength. However, research on wear behavior remains open to discussion. The present work evaluates the sliding wear response of 316L stainless steel fabricated by laser powder bed fusion in three conditions: (1) as-built, (2) stressrelieved at 550degree celsius, and (3) heat-treated at 1150degree celsius. A pin-on-disk tribometer and a nanoindentation tester were employed to assess the tribological response and compare it with the same cold drawing material. The wear track and volume loss were evaluated using a 3D surface profile meter. Furthermore, the finite element method was applied to validate the experimental results and obtain insights into the behavior of the pin and disk couple. The results show that the samples in the as-built condition exhibit higher wear resistance associated with higher hardness. Stress relief slightly alters the wear response, while heat treatment modifies the microstructure, reducing the sliding wear resistance. The wear of the heat-treated samples cannot be attributed to a single wear mechanism, a synergy between several sub-mechanisms, such as abrasion, adhesion, oxidation, and tribochemical reactions.
dc.fuente.origenWOS
dc.identifier.doi10.1016/j.jmrt.2024.09.263
dc.identifier.eissn2214-0697
dc.identifier.issn2238-7854
dc.identifier.urihttps://doi.org/10.1016/j.jmrt.2024.09.263
dc.identifier.urihttps://repositorio.uc.cl/handle/11534/89951
dc.identifier.wosidWOS:001331701600001
dc.language.isoen
dc.pagina.final2703
dc.pagina.inicio2692
dc.revistaJournal of materials research and technology-jmr&t
dc.rightsacceso restringido
dc.subjectWear
dc.subjectHeat treatment
dc.subjectAdditive manufacturing
dc.subjectLaser powder bed fusion
dc.subjectSimulation
dc.subject.ods09 Industry, Innovation and Infrastructure
dc.subject.odspa09 Industria, innovación e infraestructura
dc.titleExperimental and numerical investigation of sliding wear of heat-treated 316L stainless steel additively manufactured
dc.typeartículo
dc.volumen33
sipa.indexWOS
sipa.trazabilidadWOS;2025-01-12
Files