The Role of Temperature in the Along-Margin Distribution of Volcanism and Seismicity in Subduction Zones: Insights From 3-D Thermomechanical Modeling of the Central Andean Margin

No Thumbnail Available
Date
2021
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
The distribution of volcanic and seismogenic zones is segmented along the trench-parallel direction in the Central Andes, and factors controlling their clustering are not fully understood. Here we present a 3-D thermomechanical model of the subduction zone at 18 degrees-26 degrees S to examine the role that temperature and mantle flow play in the distribution of active volcanoes and seismicity. We applied a steady state approach in which solid-state flow is driven by a kinematically prescribed slab with realistic geometry (including changes along the Bolivian Orocline) and using a 3-D model of the continental crust thickness. The obtained temperature distribution is consistent with proxies for isotherms derived from independent geophysical data, except below the Eastern Cordillera at 21 degrees-23 degrees S. The computed mantle flow pattern reveals the presence of along-margin dynamic pressure gradients. This 3-D preferential flow results in mantle temperatures of 1200-1400 degrees C at 80-100 km depth below the arc, with comparatively higher temperatures at similar to 22 degrees-25 degrees S. The obtained along-margin variations in temperature and in estimated melt velocity suggest that the subarc mantle south of 22 degrees S exhibits more favorable conditions for generation and upward migration of partial melts. This segment coincides with the higher concentration of active arc volcanoes and the presence of the Altiplano-Puna Volcanic Complex in the backarc. Intermediate-depth seismicity concentrates roughly below where the slab top is at 400-800 degrees C, suggesting that temperature exerts some control on the first-order distribution of intraslab seismicity. However, most intraslab seismicity occur at pressure-temperature conditions which are outside of the stability field expected for key dehydration reactions in slabs.
Description
Keywords
subduction zones, Andes, geodynamics, thermomechanical models, seismicity, volcanism
Citation