A machine-learning approach for predicting butyrate production by microbial consortia using metabolic network information
No Thumbnail Available
Date
2025
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
Understanding the behavior of microbial consortia is crucial for predicting metabolite production by microorganisms. Genome-scale network reconstructions enable the computation of metabolic interactions and specific associations within microbial consortia underpinning the production of different metabolites. In the context of the human gut, butyrate is a central metabolite produced by bacteria that plays a key role within the gut microbiome impacting human health. Despite its
importance, there is a lack of computational methods capable of predicting its production as a function of the consortium composition. Here, we present a novel machine-learning approach leveraging automatically generated genome-scale metabolic models to tackle this limitation. Briefly, all consortia made of two up to 13 members from a pool of 19 bacteria with known genomes, including at least one butyrate producer from a pool of three known producer species, were built and their (maximum) in silico butyrate production simulated. Using network-derived descriptors from each bacteria, butyrate production by the above consortia was used as training data for various machine learning models. The performance of the algorithms was evaluated using k-fold cross-validation and new experimental data, displaying a Pearson correlation coefficient exceeding 0.75 for the predicted and observed butyrate production in two bacteria consortia. While consortia with more
than two bacteria showed generally worse predictions, the best machine-learning models still outperformed predictions from genome-scale metabolic models alone. Overall, this approach provides a valuable tool and framework for probing promising butyrate-producing consortia on a large scale, guiding experimentation, and more importantly, predicting metabolic production by consortia.
Description
Keywords
Microbial consortia, Machine learning, Butyrate production, Metabolic network