Progenitor, environment, and modelling of the interacting transient AT 2016jbu (Gaia16cfr)

dc.contributor.authorBrennan, S. J.
dc.contributor.authorFraser, M.
dc.contributor.authorJohansson, J.
dc.contributor.authorPastorello, A.
dc.contributor.authorKotak, R.
dc.contributor.authorStevance, H. F.
dc.contributor.authorChen, T-W
dc.contributor.authorEldridge, J. J.
dc.contributor.authorBose, S.
dc.contributor.authorBrown, P. J.
dc.contributor.authorCallis, E.
dc.contributor.authorCartier, R.
dc.contributor.authorDennefeld, M.
dc.contributor.authorDong, Subo
dc.contributor.authorDuffy, P.
dc.contributor.authorElias-Rosa, N.
dc.contributor.authorHosseinzadeh, G.
dc.contributor.authorHsiao, E.
dc.contributor.authorKuncarayakti, H.
dc.contributor.authorMartin-Carrillo, A.
dc.contributor.authorMonard, B.
dc.contributor.authorPignata, G.
dc.contributor.authorSand, D.
dc.contributor.authorShappee, B. J.
dc.contributor.authorSmartt, S. J.
dc.contributor.authorTucker, B. E.
dc.contributor.authorWyrzykowski, L.
dc.contributor.authorAbbot, H.
dc.contributor.authorBenetti, S.
dc.contributor.authorBento, J.
dc.contributor.authorBlondin, S.
dc.contributor.authorChen, Ping
dc.contributor.authorDelgado, A.
dc.contributor.authorGalbany, L.
dc.contributor.authorGromadzki, M.
dc.contributor.authorGutierrez, C. P.
dc.contributor.authorHanlon, L.
dc.contributor.authorHarrison, D. L.
dc.contributor.authorHiramatsu, D.
dc.contributor.authorHodgkin, S. T.
dc.contributor.authorHoloien, T. W-S
dc.contributor.authorHowell, D. A.
dc.contributor.authorInserra, C.
dc.contributor.authorKankare, E.
dc.contributor.authorKozlowski, S.
dc.contributor.authorMuller-Bravo, T. E.
dc.contributor.authorMaguire, K.
dc.contributor.authorMcCully, C.
dc.contributor.authorMeintjes, P.
dc.contributor.authorMorrell, N.
dc.contributor.authorNicholl, M.
dc.contributor.authorO'Neill, D.
dc.contributor.authorPietrukowicz, P.
dc.contributor.authorPoleski, R.
dc.contributor.authorPrieto, J. L.
dc.contributor.authorRau, A.
dc.contributor.authorReichart, D. E.
dc.contributor.authorSchweyer, T.
dc.contributor.authorShahbandeh, M.
dc.contributor.authorSkowron, J.
dc.contributor.authorSollerman, J.
dc.contributor.authorSoszynski, I
dc.contributor.authorStritzinger, M. D.
dc.contributor.authorSzymanski, M.
dc.contributor.authorTartaglia, L.
dc.contributor.authorUdalski, A.
dc.contributor.authorUlaczyk, K.
dc.contributor.authorYoung, D. R.
dc.contributor.authorvan Leeuwen, M.
dc.contributor.authorvan Soelen, B.
dc.date.accessioned2025-01-20T21:06:35Z
dc.date.available2025-01-20T21:06:35Z
dc.date.issued2022
dc.description.abstractWe present the bolometric light curve, identification and analysis of the progenitor candidate, and preliminary modelling of AT 2016jbu (Gaia16cfr). We find a progenitor consistent with a similar to 22-25 M-circle dot yellow hypergiant surrounded by a dusty circumstellar shell, in agreement with what has been previously reported. We see evidence for significant photometric variability in the progenitor, as well as strong H alpha emission consistent with pre-existing circumstellar material. The age of the environment, as well as the resolved stellar population surrounding AT 2016jbu, supports a progenitor age of >10 Myr, consistent with a progenitor mass of similar to 22 M-circle dot. A joint analysis of the velocity evolution of AT 2016jbu and the photospheric radius inferred from the bolometric light curve shows the transient is consistent with two successive outbursts/explosions. The first outburst ejected material with velocity similar to 650 km s(-1), while the second, more energetic event ejected material at similar to 4500 km s(-1). Whether the latter is the core collapse of the progenitor remains uncertain. We place a limit on the ejected Ni-56 mass of <0.016 M-circle dot. Using the Binary Population And Spectral Synthesis (BPASS) code, we explore a wide range of possible progenitor systems and find that the majority of these are in binaries, some of which are undergoing mass transfer or common-envelope evolution immediately prior to explosion. Finally, we use the SuperNova Explosion Code (SNEC) to demonstrate that the low-energy explosions within some of these binary systems, together with sufficient circumstellar material, can reproduce the overall morphology of the light curve of AT 2016jbu.
dc.fuente.origenWOS
dc.identifier.doi10.1093/mnras/stac1228
dc.identifier.eissn1365-2966
dc.identifier.issn0035-8711
dc.identifier.urihttps://doi.org/10.1093/mnras/stac1228
dc.identifier.urihttps://repositorio.uc.cl/handle/11534/93357
dc.identifier.wosidWOS:000804922700012
dc.issue.numero4
dc.language.isoen
dc.pagina.final5685
dc.pagina.inicio5666
dc.revistaMonthly notices of the royal astronomical society
dc.rightsacceso restringido
dc.subjectstars: massive
dc.subjectsupernovae: general
dc.subjectsupernovae: individual: AT 2016jbu
dc.titleProgenitor, environment, and modelling of the interacting transient AT 2016jbu (Gaia16cfr)
dc.typeartículo
dc.volumen513
sipa.indexWOS
sipa.trazabilidadWOS;2025-01-12
Files