Regression with Variable Dimension Covariates
dc.contributor.author | Mueller, Peter | |
dc.contributor.author | Quintana, Fernando Andres | |
dc.contributor.author | Page, Garritt L. | |
dc.date.accessioned | 2025-01-20T17:11:10Z | |
dc.date.available | 2025-01-20T17:11:10Z | |
dc.date.issued | 2024 | |
dc.description.abstract | Regression is one of the most fundamental statistical inference problems. A broad definition of regression problems is as estimation of the distribution of an outcome using a family of probability models indexed by covariates. Despite the ubiquitous nature of regression problems and the abundance of related methods and results there is a surprising gap in the literature. There are no well established methods for regression with a varying dimension covariate vectors, despite the common occurrence of such problems. In this paper we review some recent related papers proposing varying dimension regression by way of random partitions. | |
dc.fuente.origen | WOS | |
dc.identifier.doi | 10.1007/s13171-023-00329-3 | |
dc.identifier.eissn | 0976-8378 | |
dc.identifier.issn | 0976-836X | |
dc.identifier.uri | https://doi.org/10.1007/s13171-023-00329-3 | |
dc.identifier.uri | https://repositorio.uc.cl/handle/11534/91164 | |
dc.identifier.wosid | WOS:001118302600001 | |
dc.issue.numero | SUPPL 1 | |
dc.language.iso | en | |
dc.pagina.final | 198 | |
dc.pagina.inicio | 185 | |
dc.revista | Sankhya-series a-mathematical statistics and probability | |
dc.rights | acceso restringido | |
dc.subject | Density regression | |
dc.subject | Clustering | |
dc.subject | Partition | |
dc.subject | Missing data | |
dc.subject | C11 | |
dc.subject | H51 | |
dc.subject.ods | 03 Good Health and Well-being | |
dc.subject.odspa | 03 Salud y bienestar | |
dc.title | Regression with Variable Dimension Covariates | |
dc.type | artículo | |
dc.volumen | 86 | |
sipa.index | WOS | |
sipa.trazabilidad | WOS;2025-01-12 |