A DPG method for the quad-curl problem

dc.contributor.authorFuhrer, Thomas
dc.contributor.authorHerrera, Pablo
dc.contributor.authorHeuer, Norbert
dc.date.accessioned2025-01-20T17:18:13Z
dc.date.available2025-01-20T17:18:13Z
dc.date.issued2023
dc.description.abstractWe derive an ultraweak variational formulation of the quad-curl problem in two and three dimensions. We present a discontinuous Petrov-Galerkin (DPG) method for its approximation and prove its quasi-optimal convergence. We illustrate how this method can be applied to the Stokes problem in two dimensions, after an application of the curl operator to eliminate the pressure variable. In this way, DPG techniques known from Kirchhoff-Love plates can be used. We present an a priori error estimate that improves a previous approximation result for effective shear forces by using a less restrictive regularity assumption. Numerical experiments illustrate our findings.
dc.description.funderANID-Chile through FONDECYT
dc.fuente.origenWOS
dc.identifier.doi10.1016/j.camwa.2023.09.026
dc.identifier.eissn1873-7668
dc.identifier.issn0898-1221
dc.identifier.urihttps://doi.org/10.1016/j.camwa.2023.09.026
dc.identifier.urihttps://repositorio.uc.cl/handle/11534/91377
dc.identifier.wosidWOS:001147987200001
dc.language.isoen
dc.pagina.final238
dc.pagina.inicio221
dc.revistaComputers & mathematics with applications
dc.rightsacceso restringido
dc.subjectDPG
dc.subjectQuad-curl
dc.subjectStokes
dc.subjectKirchhoff-Love
dc.titleA DPG method for the quad-curl problem
dc.typeartículo
dc.volumen149
sipa.indexWOS
sipa.trazabilidadWOS;2025-01-12
Files