STABILITY OF NON-MONOTONE AND BACKWARD WAVES FOR DELAY NON-LOCAL REACTION-DIFFUSION EQUATIONS

dc.contributor.authorSolar, Abraham
dc.date.accessioned2025-01-23T21:11:48Z
dc.date.available2025-01-23T21:11:48Z
dc.date.issued2019
dc.description.abstractThis paper deals with the stability of semi-wavefronts to the follRowing delay non-local monostable equation: (v) over dot(t, x) = Delta v(t, x) - v(t, x) + integral(Rd) K(y)g(v(t - h, x - y))dy, x is an element of R-d, t > 0; where h > 0 and d is an element of Z(+). We give two general results for d >= 1: on the global stability of semi-wavefronts in L-p-spaces with unbounded weights and the local stability of planar wavefronts in L-p-spaces with bounded weights. We also give a global stability result for d = 1 which yields to the global stability in Sobolev spaces with bounded weights. Here g is not assumed to be monotone and the kernel K is not assumed to be symmetric, therefore non-monotone semi-wavefronts and backward semiwavefronts appear for which we show their stability. In particular, the global stability of critical wavefronts is stated.
dc.description.funderFondecyt (Chile)
dc.fuente.origenWOS
dc.identifier.doi10.3934/dcds.2019255
dc.identifier.eissn1553-5231
dc.identifier.issn1078-0947
dc.identifier.urihttps://doi.org/10.3934/dcds.2019255
dc.identifier.urihttps://repositorio.uc.cl/handle/11534/100920
dc.identifier.wosidWOS:000475785300012
dc.issue.numero10
dc.language.isoen
dc.pagina.final5823
dc.pagina.inicio5799
dc.revistaDiscrete and continuous dynamical systems
dc.rightsacceso restringido
dc.subjectNon-local equations
dc.subjectdelay equations
dc.subjectsemi-wavefronts
dc.subjectnon-monotone wavefronts
dc.subjectglobal stability
dc.subjectlocal stability
dc.subject.ods03 Good Health and Well-being
dc.subject.odspa03 Salud y bienestar
dc.titleSTABILITY OF NON-MONOTONE AND BACKWARD WAVES FOR DELAY NON-LOCAL REACTION-DIFFUSION EQUATIONS
dc.typeartículo
dc.volumen39
sipa.indexWOS
sipa.trazabilidadWOS;2025-01-12
Files