CLASSIFICATION OF UNIFORMLY DISTRIBUTED MEASURES OF DIMENSION 1 IN GENERAL CODIMENSION

dc.contributor.authorLaurain, Paul
dc.contributor.authorPetrache, Mircea
dc.date.accessioned2025-01-20T22:02:17Z
dc.date.available2025-01-20T22:02:17Z
dc.date.issued2021
dc.description.abstractStarting with the work of Preiss on the geometry of measures, the classification of uniform measures in R-d has remained open, except. for d = 1 and for compactly supported measures in d = 2, and for codimension 1. In this paper we study 1-dimensional measures in R-d for all d and classify uniform measures with connected 1-dimensional support, which turn out to be homogeneous measures. We provide as well a partial classification of general uniform measures of dimension 1 in the absence of the connected support hypothesis.
dc.fuente.origenWOS
dc.identifier.eissn1945-0036
dc.identifier.issn1093-6106
dc.identifier.urihttps://repositorio.uc.cl/handle/11534/93962
dc.identifier.wosidWOS:000792033600006
dc.issue.numero4
dc.language.isoen
dc.pagina.final578
dc.pagina.inicio565
dc.revistaAsian journal of mathematics
dc.rightsacceso restringido
dc.subjectuniform measures
dc.subjecthomogeneous measures
dc.subjecthelices
dc.subjecthigher codimension
dc.titleCLASSIFICATION OF UNIFORMLY DISTRIBUTED MEASURES OF DIMENSION 1 IN GENERAL CODIMENSION
dc.typeartículo
dc.volumen25
sipa.indexWOS
sipa.trazabilidadWOS;2025-01-12
Files