An in-depth system-level assessment of green hydrogen production by coupling solid oxide electrolysis and solar thermal systems

dc.article.number119537
dc.catalogadordfo
dc.contributor.authorArias, Ignacio
dc.contributor.authorCastillejo Cuberos, Armando
dc.contributor.authorBattisti, Felipe G.
dc.contributor.authorRomero Ramos, J.A.
dc.contributor.authorPérez, Manuel
dc.contributor.authorGonzález Portillo, L.F.
dc.contributor.authorValenzuela, Loreto
dc.contributor.authorCardemil Iglesias, José Miguel
dc.contributor.authorEscobar, Rodrigo
dc.date.accessioned2025-03-13T18:31:55Z
dc.date.available2025-03-13T18:31:55Z
dc.date.issued2025
dc.description.abstractThis study presents a comprehensive techno-economic analysis of green hydrogen production utilizing a third-generation Concentrated Solar Power system integrated with Solid Oxide Electrolysis Cells, examining system configurations under variable climatic conditions in Chile and Spain. By employing dynamic simulation models that consider hourly and sub-hourly datasets, the research assesses the impact of solar irradiance variability on hydrogen production efficiency. The integration approach explores the efficacy of utilizing high-temperature solar power-derived heat for enhanced electrolysis operation, highlighting the critical influence of solar resource quality and data temporal resolution in system performance. Several scenarios involving different solar multiples, thermal energy storage capacities, and electrolyzer sizes were analyzed to identify their effects on the Levelized Cost of Hydrogen. The economic analysis reveals that this cost is notably sensitive to operational parameters and system configurations, suggesting that optimal integration and scaling of solar power and electrolysis technologies could significantly reduce hydrogen production costs. The findings underscore the need for targeted energy policies and investments in renewable technologies to support cost-effective hydrogen production, promoting future research focusing on advanced materials for electrolysis cells and improved system integration strategies. This work enhances the understanding of integrating advanced solar thermal and electrolysis technologies, providing a robust framework for advancing global sustainable energy solutions.
dc.fuente.origenSCOPUS
dc.identifier.doi10.1016/j.enconman.2025.119537
dc.identifier.issn01968-904
dc.identifier.scopusidSCOPUS_ID:85216524881
dc.identifier.urihttps://doi.org/10.1016/j.enconman.2025.119537
dc.identifier.urihttps://repositorio.uc.cl/handle/11534/102575
dc.information.autorucEscuela de Ingeniería; Castillejo Cuberos Armando; 0000-0002-0742-4661; 1050239
dc.information.autorucEscuela de Ingeniería; Cardemil Iglesias Jose Miguel; 0000-0002-9022-8150; 119912
dc.language.isoen
dc.nota.accesoContenido parcial
dc.revistaEnergy Conversion and Management
dc.rightsacceso restringido
dc.subjectConcentrated solar power systems
dc.subjectGreen hydrogen
dc.subjectHigh-temperature
dc.subjectSolar energy
dc.subjectSolid-particle
dc.subject.ddc620
dc.subject.deweyIngenieríaes_ES
dc.subject.ods09 Industry, innovation and infrastructure
dc.subject.odspa09 Industria, innovación e infraestructura
dc.titleAn in-depth system-level assessment of green hydrogen production by coupling solid oxide electrolysis and solar thermal systems
dc.typeartículo
dc.volumen327
sipa.codpersvinculados1050239
sipa.codpersvinculados119912
sipa.trazabilidadSCOPUS;2025-02-23
Files