Effects of Grooved Surfaces and Lubrication Media on the Performance of Hybrid Gas Journal Bearings

dc.article.number13110492
dc.catalogadorgrr
dc.contributor.authorKumar Tomar, Adesh
dc.contributor.authorSahu, Krishnkant
dc.contributor.authorSharma, Satish C.
dc.contributor.authorMarian, Max
dc.date.accessioned2025-11-20T18:52:41Z
dc.date.available2025-11-20T18:52:41Z
dc.date.issued2025
dc.description.abstractGas bearings are attractive for sustainable, high-speed, and cryogenic applications, where gases replace liquid lubricants. This study numerically analyzed hybrid gas journal bearings lubricated with hydrogen, nitrogen, air, and helium, and quantifies the impact of circumferential micro-grooves. The compressible Reynolds equation was solved by the finite element method with constant-flow valve restrictors, while Gauss–Seidel iterations were used for convergence. The model was verified against published theoretical and experimental data with maximum deviations below 6%, and mesh independence is confirmed. The parametric results show that the gas type and texturing jointly controlled static and dynamic performance. Helium (highest viscosity) yielded the largest minimum film thickness, whereas hydrogen (lowest viscosity) attained higher peak pressures at a lower film thickness for a given load. Grooves redistributed pressure and reduced both the maximum pressure and the minimum film thickness, but they also lowered the frictional torque. Quantitatively, the hydrogen-lubricated grooved bearing reduced the frictional torque by up to 50% compared with the non-grooved air-lubricated bearing at the same load. Relative to air, hydrogen increased stiffness and damping by up to 10% and 50%, respectively, and raised the stability threshold speed by 110%. Conversely, grooves decreased the stiffness, damping, and stability threshold speed compared with non-grooved surfaces, revealing a trade-off between friction reduction and dynamic stability. These findings provide design guidance for selecting gas media and surface texturing to tailor hybrid gas journal bearings to application-specific requirements.
dc.fechaingreso.objetodigital2025-11-20
dc.format.extent19 páginas
dc.fuente.origenORCID
dc.identifier.doi10.3390/lubricants13110492
dc.identifier.issn2075-4442
dc.identifier.urihttps://doi.org/10.3390/lubricants13110492
dc.identifier.urihttps://repositorio.uc.cl/handle/11534/107071
dc.information.autorucEscuela de Ingeniería; Marian, Max; 0000-0003-2045-6649; 1247429
dc.information.autorucEscuela de Ingeniería; Kumar Tomar, Adesh; 0000-0001-5534-3826; 1354601
dc.issue.numero11
dc.language.isoen
dc.nota.accesocontenido completo
dc.revistaLubricants
dc.rightsacceso abierto
dc.rights.licenseCC BY 4.0 Attribution 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectFEM
dc.subjectSurface texturing
dc.subjectHybrid journal bearing
dc.subjectHydrogen
dc.subjectNitrogen
dc.subjectAir
dc.subjectHelium
dc.subject.ddc620
dc.subject.deweyIngenieríaes_ES
dc.subject.ods11 Sustainable cities and communities
dc.subject.ods09 Industry, innovation and infrastructure
dc.subject.odspa11 Ciudades y comunidades sostenibles
dc.subject.odspa09 Industria, innovación e infraestructura
dc.titleEffects of Grooved Surfaces and Lubrication Media on the Performance of Hybrid Gas Journal Bearings
dc.typeartículo
dc.volumen13
sipa.codpersvinculados1247429
sipa.codpersvinculados1354601
sipa.trazabilidadORCID;2025-11-17
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
lubricants-13-00492-v2.pdf
Size:
4.49 MB
Format:
Adobe Portable Document Format
Description: