Global Stability of Fluid Flows Despite Transient Growth of Energy

dc.contributor.authorFuentes, Federico
dc.contributor.authorGoluskin, David
dc.contributor.authorChernyshenko, Sergei
dc.date.accessioned2025-01-20T21:06:15Z
dc.date.available2025-01-20T21:06:15Z
dc.date.issued2022
dc.description.abstractVerifying nonlinear stability of a laminar fluid flow against all perturbations is a central challenge in fluid dynamics. Past results rely on monotonic decrease of a perturbation energy or a similar quadratic generalized energy. None show stability for the many flows that seem to be stable despite these energies growing transiently. Here a broadly applicable method to verify global stability of such flows is presented. It uses polynomial optimization computations to construct nonquadratic Lyapunov functions that decrease monotonically. The method is used to verify global stability of 2D plane Couette flow at Reynolds numbers above the the energy stability threshold found by Orr in 1907 [The stability or instability of the steady motions of a perfect liquid and of a viscous liquid. Part II: A viscous liquid, Proc. R. Ir. Acad. Sect. A 27, 69 (1907)]. This is the first global stability result for any flow that surpasses the energy method.
dc.fuente.origenWOS
dc.identifier.doi10.1103/PhysRevLett.128.204502
dc.identifier.eissn1079-7114
dc.identifier.issn0031-9007
dc.identifier.urihttps://doi.org/10.1103/PhysRevLett.128.204502
dc.identifier.urihttps://repositorio.uc.cl/handle/11534/93341
dc.identifier.wosidWOS:000807220600001
dc.issue.numero20
dc.language.isoen
dc.revistaPhysical review letters
dc.rightsacceso restringido
dc.titleGlobal Stability of Fluid Flows Despite Transient Growth of Energy
dc.typeartículo
dc.volumen128
sipa.indexWOS
sipa.trazabilidadWOS;2025-01-12
Files