MESH-INDEPENDENT OPERATOR PRECONDITIONING FOR BOUNDARY ELEMENTS ON OPEN CURVES

dc.contributor.authorHiptmair, Ralf
dc.contributor.authorJerez-Hanckes, Carlos
dc.contributor.authorUrzua-Torres, Carolina
dc.date.accessioned2025-01-23T21:41:13Z
dc.date.available2025-01-23T21:41:13Z
dc.date.issued2014
dc.description.abstractBoundary value problems for the Poisson equation in the exterior of an open bounded Lipschitz curve C can be recast as first-kind boundary integral equations featuring weakly singular or hypersingular boundary integral operators (BIOs). Based on the recent discovery in [C. Jerez-Hanckes and J. Nedelec, SIAM J. Math. Anal., 44 (2012), pp. 2666-2694] of inverses of these BIOs for C = [-1, 1], we pursue operator preconditioning of the linear systems of equations arising from Galerkin-Petrov discretization by means of zeroth- and first-order boundary elements. The preconditioners rely on boundary element spaces defined on dual meshes and they can be shown to perform uniformly well independently of the number of degrees of freedom even for families of locally refined meshes.
dc.fuente.origenWOS
dc.identifier.doi10.1137/130947040
dc.identifier.eissn1095-7170
dc.identifier.issn0036-1429
dc.identifier.urihttps://doi.org/10.1137/130947040
dc.identifier.urihttps://repositorio.uc.cl/handle/11534/101636
dc.identifier.wosidWOS:000344746400005
dc.issue.numero5
dc.language.isoen
dc.pagina.final2314
dc.pagina.inicio2295
dc.revistaSiam journal on numerical analysis
dc.rightsacceso restringido
dc.subjectoperator (Calderon) preconditioning
dc.subjectscreen problems
dc.subjectfracture problems
dc.subjectboundary integral operators
dc.titleMESH-INDEPENDENT OPERATOR PRECONDITIONING FOR BOUNDARY ELEMENTS ON OPEN CURVES
dc.typeartículo
dc.volumen52
sipa.indexWOS
sipa.trazabilidadWOS;2025-01-12
Files