Results on the Spectral Stability of Standing Wave Solutions of the Soler Model in 1-D

dc.contributor.authorAldunate, Danko
dc.contributor.authorRicaud, Julien
dc.contributor.authorStockmeyer, Edgardo
dc.contributor.authorvan den Bosch, Hanne
dc.date.accessioned2025-01-20T20:16:43Z
dc.date.available2025-01-20T20:16:43Z
dc.date.issued2023
dc.description.abstractWe study the spectral stability of the nonlinear Dirac operator in dimension 1 + 1, restricting our attention to nonlinearities of the form f ((psi, beta psi)C-2)beta. We obtain bounds on eigenvalues for the linearized operator around standing wave solutions of the form e(-i omega t) phi(0). For the case of power nonlinearities f (s) = s|s|(p-1), p > 0, we obtain a range of frequencies omega such that the linearized operator has no unstable eigenvalues on the axes of the complex plane. As a crucial part of the proofs, we obtain a detailed description of the spectra of the self-adjoint blocks in the linearized operator. In particular, we show that the condition (phi(0), beta phi(0))C-2 > 0 characterizes groundstates analogously to the Schrodinger case.
dc.fuente.origenWOS
dc.identifier.doi10.1007/s00220-023-04646-4
dc.identifier.eissn1432-0916
dc.identifier.issn0010-3616
dc.identifier.urihttps://doi.org/10.1007/s00220-023-04646-4
dc.identifier.urihttps://repositorio.uc.cl/handle/11534/92349
dc.identifier.wosidWOS:000943858800001
dc.issue.numero1
dc.language.isoen
dc.pagina.final273
dc.pagina.inicio227
dc.revistaCommunications in mathematical physics
dc.rightsacceso restringido
dc.titleResults on the Spectral Stability of Standing Wave Solutions of the Soler Model in 1-D
dc.typeartículo
dc.volumen401
sipa.indexWOS
sipa.trazabilidadWOS;2025-01-12
Files