Results on the Spectral Stability of Standing Wave Solutions of the Soler Model in 1-D
dc.contributor.author | Aldunate, Danko | |
dc.contributor.author | Ricaud, Julien | |
dc.contributor.author | Stockmeyer, Edgardo | |
dc.contributor.author | van den Bosch, Hanne | |
dc.date.accessioned | 2025-01-20T20:16:43Z | |
dc.date.available | 2025-01-20T20:16:43Z | |
dc.date.issued | 2023 | |
dc.description.abstract | We study the spectral stability of the nonlinear Dirac operator in dimension 1 + 1, restricting our attention to nonlinearities of the form f ((psi, beta psi)C-2)beta. We obtain bounds on eigenvalues for the linearized operator around standing wave solutions of the form e(-i omega t) phi(0). For the case of power nonlinearities f (s) = s|s|(p-1), p > 0, we obtain a range of frequencies omega such that the linearized operator has no unstable eigenvalues on the axes of the complex plane. As a crucial part of the proofs, we obtain a detailed description of the spectra of the self-adjoint blocks in the linearized operator. In particular, we show that the condition (phi(0), beta phi(0))C-2 > 0 characterizes groundstates analogously to the Schrodinger case. | |
dc.fuente.origen | WOS | |
dc.identifier.doi | 10.1007/s00220-023-04646-4 | |
dc.identifier.eissn | 1432-0916 | |
dc.identifier.issn | 0010-3616 | |
dc.identifier.uri | https://doi.org/10.1007/s00220-023-04646-4 | |
dc.identifier.uri | https://repositorio.uc.cl/handle/11534/92349 | |
dc.identifier.wosid | WOS:000943858800001 | |
dc.issue.numero | 1 | |
dc.language.iso | en | |
dc.pagina.final | 273 | |
dc.pagina.inicio | 227 | |
dc.revista | Communications in mathematical physics | |
dc.rights | acceso restringido | |
dc.title | Results on the Spectral Stability of Standing Wave Solutions of the Soler Model in 1-D | |
dc.type | artículo | |
dc.volumen | 401 | |
sipa.index | WOS | |
sipa.trazabilidad | WOS;2025-01-12 |