Development of Soft Wrinkled Micropatterns on the Surface of 3D-Printed Hydrogel-Based Scaffolds via High-Resolution Digital Light Processing
dc.article.number | 761 | |
dc.catalogador | jlo | |
dc.contributor.author | Sarabia-Vallejos, Mauricio A. | |
dc.contributor.author | Romero De la Fuente, Scarlett | |
dc.contributor.author | Cohn-Inostroza, Nicolás A. | |
dc.contributor.author | Terraza Inostroza, Claudio Alberto | |
dc.contributor.author | Rodriguez-Hernandez, Juan | |
dc.contributor.author | González-Henríquez, Carmen M. | |
dc.date.accessioned | 2025-03-19T16:11:15Z | |
dc.date.available | 2025-03-19T16:11:15Z | |
dc.date.issued | 2024 | |
dc.description.abstract | The preparation of sophisticated hierarchically structured and cytocompatible hydrogel scaffolds is presented. For this purpose, a photosensitive resin was developed, printability was evaluated, and the optimal conditions for 3D printing were investigated. The design and fabrication by additive manufacturing of tailor-made porous scaffolds were combined with the formation of surface wrinkled micropatterns. This enabled the combination of micrometer-sized channels (100–200 microns) with microstructured wrinkled surfaces (1–3 μm wavelength). The internal pore structure was found to play a critical role in the mechanical properties. More precisely, the TPMS structure with a zero local curvature appears to be an excellent candidate for maintaining its mechanical resistance to compression stress, thus retaining its structural integrity upon large uniaxial deformations up to 70%. Finally, the washing conditions selected enabled us to produce noncytotoxic materials, as evidenced by experiments using AlamarBlue to follow the metabolic activity of the cells. | |
dc.description.funder | UTEM | |
dc.description.funder | CSIC | |
dc.description.funder | FONDECYT | |
dc.description.funder | FONDECYT | |
dc.description.funder | ANID-Chile | |
dc.description.funder | Ministerio de Ciencia, Innovación y Universidades | |
dc.description.funder | Ministerio de Ciencia, Innovación y Universidades | |
dc.description.funder | FONDEF IDeA I+D | |
dc.fechaingreso.objetodigital | 2025-03-19 | |
dc.format.extent | 19 páginas | |
dc.fuente.origen | SCOPUS | |
dc.identifier.doi | 10.3390/gels10120761 | |
dc.identifier.issn | 2310-2861 | |
dc.identifier.scopusid | SCOPUS_ID:85213334119 | |
dc.identifier.uri | https://doi.org/10.3390/gels10120761 | |
dc.identifier.uri | https://repositorio.uc.cl/handle/11534/102818 | |
dc.information.autoruc | Escuela de Química; Terraza Inostroza, Claudio Alberto; 0000-0002-6326-8771; 1001668 | |
dc.language.iso | en | |
dc.nota.acceso | contenido completo | |
dc.revista | Gels | |
dc.rights | acceso abierto | |
dc.rights.license | CC BY 4.0 Attribution 4.0 International | |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | |
dc.subject | 3D porous scaffolds | |
dc.subject | Stereolithography | |
dc.subject | Wrinkled nonplanar surfaces | |
dc.subject.ddc | 620 | |
dc.subject.dewey | Ingeniería | es_ES |
dc.title | Development of Soft Wrinkled Micropatterns on the Surface of 3D-Printed Hydrogel-Based Scaffolds via High-Resolution Digital Light Processing | |
dc.type | artículo | |
dc.volumen | 10 | |
sipa.codpersvinculados | 1001668 | |
sipa.trazabilidad | SCOPUS;2025-01-05 |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- gels-10-00761-v2.pdf
- Size:
- 4.43 MB
- Format:
- Adobe Portable Document Format
- Description: