Carrot DcALFIN4 and DcALFIN7 Transcription Factors Boost Carotenoid Levels and Participate Differentially in Salt Stress Tolerance When Expressed in <i>Arabidopsis thaliana</i> and <i>Actinidia deliciosa</i>

dc.contributor.authorFelipe Quiroz-Iturra, Luis
dc.contributor.authorSimpson, Kevin
dc.contributor.authorArias, Daniela
dc.contributor.authorSilva, Cristobal
dc.contributor.authorGonzalez-Calquin, Christian
dc.contributor.authorAmaza, Leticia
dc.contributor.authorHandford, Michael
dc.contributor.authorStange, Claudia
dc.date.accessioned2025-01-20T21:01:42Z
dc.date.available2025-01-20T21:01:42Z
dc.date.issued2022
dc.description.abstractALFIN-like transcription factors (ALs) are involved in several physiological processes such as seed germination, root development and abiotic stress responses in plants. In carrot (Daucus carota), the expression of DcPSY2, a gene encoding phytoene synthase required for carotenoid biosynthesis, is induced after salt and abscisic acid (ABA) treatment. Interestingly, the DcPSY2 promoter contains multiple ALFIN response elements. By in silico analysis, we identified two putative genes with the molecular characteristics of ALs, DcAL4 and DcAL7, in the carrot transcriptome. These genes encode nuclear proteins that transactivate reporter genes and bind to the carrot DcPSY2 promoter in yeast. The expression of both genes is induced in carrot under salt stress, especially DcAL4 which also responds to ABA treatment. Transgenic homozygous T3 Arabidopsis thaliana lines that stably express DcAL4 and DcAL7 show a higher survival rate with respect to control plants after chronic salt stress. Of note is that DcAL4 lines present a better performance in salt treatments, correlating with the expression level of DcAL4, AtPSY and AtDXR and an increase in carotenoid and chlorophyll contents. Likewise, DcAL4 transgenic kiwi (Actinidia deliciosa) lines show increased carotenoid and chlorophyll content and higher survival rate compared to control plants after chronic salt treatment. Therefore, DcAL4 and DcAL7 encode functional transcription factors, while ectopic expression of DcAL4 provides increased tolerance to salinity in Arabidopsis and Kiwi plants.
dc.fuente.origenWOS
dc.identifier.doi10.3390/ijms232012157
dc.identifier.eissn1422-0067
dc.identifier.urihttps://doi.org/10.3390/ijms232012157
dc.identifier.urihttps://repositorio.uc.cl/handle/11534/92938
dc.identifier.wosidWOS:000875017900001
dc.issue.numero20
dc.language.isoen
dc.revistaInternational journal of molecular sciences
dc.rightsacceso restringido
dc.subjectALFIN-like transcription factor
dc.subjectDcAL4 and DcAL7
dc.subjectcarrot
dc.subjectcarotenoids
dc.subjectsalt stress tolerance
dc.subjectActinidia deliciosa (kiwi)
dc.subject.ods03 Good Health and Well-being
dc.subject.odspa03 Salud y bienestar
dc.titleCarrot DcALFIN4 and DcALFIN7 Transcription Factors Boost Carotenoid Levels and Participate Differentially in Salt Stress Tolerance When Expressed in <i>Arabidopsis thaliana</i> and <i>Actinidia deliciosa</i>
dc.typeartículo
dc.volumen23
sipa.indexWOS
sipa.trazabilidadWOS;2025-01-12
Files