Bistable Boundary Reactions in Two Dimensions

dc.contributor.authorDavila, Juan
dc.contributor.authordel Pino, Manuel
dc.contributor.authorMusso, Monica
dc.date.accessioned2025-01-21T00:02:25Z
dc.date.available2025-01-21T00:02:25Z
dc.date.issued2011
dc.description.abstractIn a bounded domain Omega subset of R(2) with smooth boundary we consider the problem Delta U =0 in Omega, du/dv = i/epsilon f(u) on d Omega
dc.description.abstractwhere nu is the unit normal exterior vector, epsilon > 0 is a small parameter and f is a bistable nonlinearity such as f(u) = sin(pi u) or f(u) = (1 - u (2))u. We construct solutions that develop multiple transitions from -1 to 1 and vice-versa along a connected component of the boundary a,I (c). We also construct an explicit solution when Omega is a disk and f(u) = sin(pi u).
dc.fuente.origenWOS
dc.identifier.doi10.1007/s00205-010-0337-3
dc.identifier.issn0003-9527
dc.identifier.urihttps://doi.org/10.1007/s00205-010-0337-3
dc.identifier.urihttps://repositorio.uc.cl/handle/11534/95424
dc.identifier.wosidWOS:000288508400004
dc.issue.numero1
dc.language.isoen
dc.pagina.final140
dc.pagina.inicio89
dc.revistaArchive for rational mechanics and analysis
dc.rightsacceso restringido
dc.titleBistable Boundary Reactions in Two Dimensions
dc.typeartículo
dc.volumen200
sipa.indexWOS
sipa.trazabilidadWOS;2025-01-12
Files