On eigenvalue accumulation for non-self-adjoint magnetic operators

dc.contributor.authorSambou, Diomba
dc.date.accessioned2024-01-10T13:51:19Z
dc.date.available2024-01-10T13:51:19Z
dc.date.issued2017
dc.description.abstractIn this work, we use regularized determinants to study the discrete spectrum generated by relatively compact non-self-adjoint perturbations of the magnetic Schrodinger operator (-i del - A)(2) -b in R-3, with constant magnetic field of strength b > 0. The distribution of the above discrete spectrum near the Landau levels 2bq, q is an element of N, is more interesting since they play the role of thresholds of the spectrum of the free operator. First, we obtain sharp upper bounds on the number of complex eigenvalues near the Landau levels. Under appropriate hypothesis, we then prove the presence of an infinite number of complex eigenvalues near each Landau level 2bq, q is an element of N, and the existence of sectors free of complex eigenvalues. We also prove that the eigenvalues are localized in certain sectors adjoining the Landau levels. In particular, we provide an adequate answer to the open problem from [34] about the existence of complex eigenvalues accumulating near the Landau levels. Furthermore, we prove that the Landau levels are the only possible accumulation points of the complex eigenvalues. (C) 2016 Elsevier Masson SAS. All rights reserved.
dc.description.funderChilean Program Nucleo Milenio de Fisica Matematica
dc.fechaingreso.objetodigital17-04-2024
dc.format.extent27 páginas
dc.fuente.origenWOS
dc.identifier.doi10.1016/j.matpur.2016.11.003
dc.identifier.eissn1776-3371
dc.identifier.issn0021-7824
dc.identifier.urihttps://doi.org/10.1016/j.matpur.2016.11.003
dc.identifier.urihttps://repositorio.uc.cl/handle/11534/79593
dc.identifier.wosidWOS:000408782300002
dc.information.autorucMatemática;Sambou D;S/I;243076
dc.issue.numero3
dc.language.isoen
dc.nota.accesocontenido parcial
dc.pagina.final332
dc.pagina.inicio306
dc.publisherELSEVIER SCIENCE BV
dc.revistaJOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES
dc.rightsacceso restringido
dc.subjectMagnetic Schrodinger operators
dc.subjectNon-self-adjoint perturbations
dc.subjectDiscrete spectrum
dc.subjectSPECTRAL SHIFT FUNCTION
dc.subjectSCHRODINGER-OPERATORS
dc.subjectLANDAU-LEVELS
dc.subjectASYMPTOTICS
dc.subjectFIELDS
dc.subjectPERTURBATIONS
dc.subjectINEQUALITIES
dc.subjectPOTENTIALS
dc.subjectRESONANCES
dc.subjectDIRAC
dc.subject.ods04 Quality Education
dc.subject.odspa04 Educación y calidad
dc.titleOn eigenvalue accumulation for non-self-adjoint magnetic operators
dc.typeartículo
dc.volumen108
sipa.codpersvinculados243076
sipa.indexWOS
sipa.indexScopus
sipa.trazabilidadCarga SIPA;09-01-2024
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
2024-04-17. On eigenvalue accumulation for non-self-adjoint magnetic operators.pdf
Size:
2.82 KB
Format:
Adobe Portable Document Format
Description: