Solvent-free mechanochemical access to phase-pure Cs-Co-Cl halometalates with tuneable electronic properties for energy applications
dc.article.number | 11006 | |
dc.catalogador | grr | |
dc.contributor.author | Garrido, Pablo | |
dc.contributor.author | Espinoza, Darío | |
dc.contributor.author | Gallardo, Karem | |
dc.contributor.author | Gonzalez-Gil, Rosa M. | |
dc.contributor.author | Castillo Rojas, Rodrigo Esteban Antonio | |
dc.date.accessioned | 2025-07-31T22:22:34Z | |
dc.date.available | 2025-07-31T22:22:34Z | |
dc.date.issued | 2025 | |
dc.description.abstract | We report a solvent-free mechanochemical route for the selectively synthesis of three different caesium cobalt chlorides: CsCoCl3, Cs2CoCl4, and Cs3CoCl5, by simply tuning the CsCl : CoCl2 precursor ratio. This is the first comprehensive comparative study of these phases synthesized in pure form, enabling a clear correlation between composition, crystal structure, and optoelectronic properties. Each phase exhibits a unique Co2+ coordination geometry: octahedral in CsCoCl3 and tetrahedral in Cs2CoCl4 and Cs3CoCl5, as revealed by XRD, SEM-EDS, Raman, and XPS, with several features reported here for the first time. All phases display high thermal stability and narrow optical bandgaps (1.65-1.70 eV), supported by ligand field analysis and CIE colorimetry. Valence and conduction band energies determined by VB-XPS and cyclic voltammetry reveal a systematic, composition-driven tuning of energy levels across the series. Importantly, the band edge alignment are suitable for visible-light-driven hydrogen evolution and photovoltaic applications. SCAPS-1D simulations predict power conversion efficiencies up to 17.1%, positioning these halocobaltates as promising absorbers. Altogether, this work introduces a scalable synthesis route and demonstrates the potential of cobalt-based halide frameworks as modular systems for solar energy conversion and photocatalysis. | |
dc.format.extent | 10 páginas | |
dc.fuente.origen | SCOPUS | |
dc.identifier.doi | 10.1039/d5dt01355k | |
dc.identifier.eissn | 1477-9226 | |
dc.identifier.issn | 1477-9234 | |
dc.identifier.scopusid | SCOPUS_ID:105009719135 | |
dc.identifier.uri | http://doi.org/10.1039/d5dt01355k | |
dc.identifier.uri | https://repositorio.uc.cl/handle/11534/105093 | |
dc.identifier.wosid | WOS:001517746500001 | |
dc.information.autoruc | Escuela de Química; Castillo Rojas, Rodrigo Esteban Antonio; 0000-0001-5795-1737; 1351838 | |
dc.issue.numero | 28 | |
dc.language.iso | en | |
dc.nota.acceso | contenido parcial | |
dc.pagina.final | 11015 | |
dc.pagina.inicio | 11006 | |
dc.revista | Dalton Transactions | |
dc.rights | acceso restringido | |
dc.rights.license | CC BY-NC 4.0 Attribution-NonCommercial 4.0 International | |
dc.rights.uri | https://creativecommons.org/licenses/by-nc/4.0/deed.en | |
dc.subject.ddc | 510 | |
dc.subject.dewey | Matemática física y química | es_ES |
dc.subject.ods | 07 Affordable and clean energy | |
dc.subject.odspa | 07 Energía asequible y no contaminante | |
dc.title | Solvent-free mechanochemical access to phase-pure Cs-Co-Cl halometalates with tuneable electronic properties for energy applications | |
dc.type | artículo | |
dc.volumen | 54 | |
sipa.codpersvinculados | 1351838 | |
sipa.trazabilidad | SCOPUS;2025-07-13 |