Solvent-free mechanochemical access to phase-pure Cs-Co-Cl halometalates with tuneable electronic properties for energy applications

dc.article.number11006
dc.catalogadorgrr
dc.contributor.authorGarrido, Pablo
dc.contributor.authorEspinoza, Darío
dc.contributor.authorGallardo, Karem
dc.contributor.authorGonzalez-Gil, Rosa M.
dc.contributor.authorCastillo Rojas, Rodrigo Esteban Antonio
dc.date.accessioned2025-07-31T22:22:34Z
dc.date.available2025-07-31T22:22:34Z
dc.date.issued2025
dc.description.abstractWe report a solvent-free mechanochemical route for the selectively synthesis of three different caesium cobalt chlorides: CsCoCl3, Cs2CoCl4, and Cs3CoCl5, by simply tuning the CsCl : CoCl2 precursor ratio. This is the first comprehensive comparative study of these phases synthesized in pure form, enabling a clear correlation between composition, crystal structure, and optoelectronic properties. Each phase exhibits a unique Co2+ coordination geometry: octahedral in CsCoCl3 and tetrahedral in Cs2CoCl4 and Cs3CoCl5, as revealed by XRD, SEM-EDS, Raman, and XPS, with several features reported here for the first time. All phases display high thermal stability and narrow optical bandgaps (1.65-1.70 eV), supported by ligand field analysis and CIE colorimetry. Valence and conduction band energies determined by VB-XPS and cyclic voltammetry reveal a systematic, composition-driven tuning of energy levels across the series. Importantly, the band edge alignment are suitable for visible-light-driven hydrogen evolution and photovoltaic applications. SCAPS-1D simulations predict power conversion efficiencies up to 17.1%, positioning these halocobaltates as promising absorbers. Altogether, this work introduces a scalable synthesis route and demonstrates the potential of cobalt-based halide frameworks as modular systems for solar energy conversion and photocatalysis.
dc.format.extent10 páginas
dc.fuente.origenSCOPUS
dc.identifier.doi10.1039/d5dt01355k
dc.identifier.eissn1477-9226
dc.identifier.issn1477-9234
dc.identifier.scopusidSCOPUS_ID:105009719135
dc.identifier.urihttp://doi.org/10.1039/d5dt01355k
dc.identifier.urihttps://repositorio.uc.cl/handle/11534/105093
dc.identifier.wosidWOS:001517746500001
dc.information.autorucEscuela de Química; Castillo Rojas, Rodrigo Esteban Antonio; 0000-0001-5795-1737; 1351838
dc.issue.numero28
dc.language.isoen
dc.nota.accesocontenido parcial
dc.pagina.final11015
dc.pagina.inicio11006
dc.revistaDalton Transactions
dc.rightsacceso restringido
dc.rights.licenseCC BY-NC 4.0 Attribution-NonCommercial 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by-nc/4.0/deed.en
dc.subject.ddc510
dc.subject.deweyMatemática física y químicaes_ES
dc.subject.ods07 Affordable and clean energy
dc.subject.odspa07 Energía asequible y no contaminante
dc.titleSolvent-free mechanochemical access to phase-pure Cs-Co-Cl halometalates with tuneable electronic properties for energy applications
dc.typeartículo
dc.volumen54
sipa.codpersvinculados1351838
sipa.trazabilidadSCOPUS;2025-07-13
Files