Assigning probability density functions in a context of information shortage

dc.contributor.authorCordero, RR
dc.contributor.authorRoth, P
dc.date.accessioned2025-01-21T01:08:24Z
dc.date.available2025-01-21T01:08:24Z
dc.date.issued2004
dc.description.abstractIn the context of experimental information shortage, uncertainty evaluation of a directly measured quantity involves obtaining its standard uncertainty as the standard deviation of an assigned probability density function (pdf) that is assumed to apply. In this article, we present a criterion to select the appropriate pdf associated with the estimate of a quantity by seeking that pdf which is the most probable among those which agree with the available information. As examples, we apply this criterion to assign the proper pdf to a measurand assuming that we know just its estimate, or both its estimate and its standard uncertainty. Our results agree with those obtained by applying the principle of maximum entropy to both situations.
dc.fuente.origenWOS
dc.identifier.doi10.1088/0026-1394/41/4/L02
dc.identifier.eissn1681-7575
dc.identifier.issn0026-1394
dc.identifier.urihttps://doi.org/10.1088/0026-1394/41/4/L02
dc.identifier.urihttps://repositorio.uc.cl/handle/11534/96464
dc.identifier.wosidWOS:000223542800002
dc.issue.numero4
dc.language.isoen
dc.pagina.finalL25
dc.pagina.inicioL22
dc.revistaMetrologia
dc.rightsacceso restringido
dc.titleAssigning probability density functions in a context of information shortage
dc.typeartículo
dc.volumen41
sipa.indexWOS
sipa.trazabilidadWOS;2025-01-12
Files