Singular Perturbation Analysis for a Coupled KdV-ODE System

dc.contributor.authorMarx, Swann
dc.contributor.authorCerpa, Eduardo
dc.date.accessioned2025-01-20T16:09:59Z
dc.date.available2025-01-20T16:09:59Z
dc.date.issued2024
dc.description.abstractAsymptotic stability is with no doubts an essential property to be studied for any system. This analysis often becomes very difficult for coupled systems and even harder when different time-scales appear. The singular perturbation method allows to decouple a full system into what are called the reduced-order system and the boundary layer system to get simpler stability conditions for the original system. In the infinite-dimensional setting, we do not have a general result making sure this strategy works. This article is devoted to this analysis for some systems coupling the Korteweg-de Vries equation and an ordinary differential equation with different time scales. More precisely, we obtain stability results and Tikhonov-type theorems.
dc.fuente.origenWOS
dc.identifier.doi10.1109/TAC.2024.3359538
dc.identifier.eissn1558-2523
dc.identifier.issn0018-9286
dc.identifier.urihttps://doi.org/10.1109/TAC.2024.3359538
dc.identifier.urihttps://repositorio.uc.cl/handle/11534/90188
dc.identifier.wosidWOS:001293894600049
dc.issue.numero8
dc.language.isoen
dc.pagina.final5337
dc.pagina.inicio5326
dc.revistaIeee transactions on automatic control
dc.rightsacceso restringido
dc.subjectAutomatic control
dc.subjectdistributed parameter systems
dc.subjectpartial differential equations (PDEs)
dc.titleSingular Perturbation Analysis for a Coupled KdV-ODE System
dc.typeartículo
dc.volumen69
sipa.indexWOS
sipa.trazabilidadWOS;2025-01-12
Files