Spectral asymptotics at thresholds for a Dirac-type operator on Z<SUP>2</SUP>
| dc.contributor.author | Miranda, Pablo | |
| dc.contributor.author | Parra, Daniel | |
| dc.contributor.author | Raikov, Georgi | |
| dc.date.accessioned | 2025-01-20T20:19:21Z | |
| dc.date.available | 2025-01-20T20:19:21Z | |
| dc.date.issued | 2023 | |
| dc.description.abstract | In this article, we provide the spectral analysis of a Dirac-type operator on Z(2) by describing the behavior of the spectral shift function associated with a sign-definite trace-class perturbation by a multiplication operator. We prove that it remains bounded outside a single threshold and obtain its main asymptotic term in the unbounded case. Interestingly, we show that the constant in the main asymptotic term encodes the interaction between a flat band and whole non-constant bands. The strategy used is the reduction of the spectral shift function to the eigenvalue counting function of some compact operator which can be studied as a toroidal pseudo-differential operator. (c) 2022 Elsevier Inc. All rights reserved. | |
| dc.fuente.origen | WOS | |
| dc.identifier.doi | 10.1016/j.jfa.2022.109743 | |
| dc.identifier.eissn | 1096-0783 | |
| dc.identifier.issn | 0022-1236 | |
| dc.identifier.uri | https://doi.org/10.1016/j.jfa.2022.109743 | |
| dc.identifier.uri | https://repositorio.uc.cl/handle/11534/92518 | |
| dc.identifier.wosid | WOS:000908409500004 | |
| dc.issue.numero | 2 | |
| dc.language.iso | en | |
| dc.revista | Journal of functional analysis | |
| dc.rights | acceso restringido | |
| dc.subject | Spectral shift function | |
| dc.subject | Discrete Dirac operator | |
| dc.subject | Cwikel estimates | |
| dc.subject | Limiting absorption principle | |
| dc.title | Spectral asymptotics at thresholds for a Dirac-type operator on Z<SUP>2</SUP> | |
| dc.type | artículo | |
| dc.volumen | 284 | |
| sipa.index | WOS | |
| sipa.trazabilidad | WOS;2025-01-12 |
