Spectral asymptotics at thresholds for a Dirac-type operator on Z<SUP>2</SUP>

dc.contributor.authorMiranda, Pablo
dc.contributor.authorParra, Daniel
dc.contributor.authorRaikov, Georgi
dc.date.accessioned2025-01-20T20:19:21Z
dc.date.available2025-01-20T20:19:21Z
dc.date.issued2023
dc.description.abstractIn this article, we provide the spectral analysis of a Dirac-type operator on Z(2) by describing the behavior of the spectral shift function associated with a sign-definite trace-class perturbation by a multiplication operator. We prove that it remains bounded outside a single threshold and obtain its main asymptotic term in the unbounded case. Interestingly, we show that the constant in the main asymptotic term encodes the interaction between a flat band and whole non-constant bands. The strategy used is the reduction of the spectral shift function to the eigenvalue counting function of some compact operator which can be studied as a toroidal pseudo-differential operator. (c) 2022 Elsevier Inc. All rights reserved.
dc.fuente.origenWOS
dc.identifier.doi10.1016/j.jfa.2022.109743
dc.identifier.eissn1096-0783
dc.identifier.issn0022-1236
dc.identifier.urihttps://doi.org/10.1016/j.jfa.2022.109743
dc.identifier.urihttps://repositorio.uc.cl/handle/11534/92518
dc.identifier.wosidWOS:000908409500004
dc.issue.numero2
dc.language.isoen
dc.revistaJournal of functional analysis
dc.rightsacceso restringido
dc.subjectSpectral shift function
dc.subjectDiscrete Dirac operator
dc.subjectCwikel estimates
dc.subjectLimiting absorption principle
dc.titleSpectral asymptotics at thresholds for a Dirac-type operator on Z<SUP>2</SUP>
dc.typeartículo
dc.volumen284
sipa.indexWOS
sipa.trazabilidadWOS;2025-01-12
Files