An Overview of Applications, Toxicology and Separation Methods of Lithium

dc.article.number917
dc.catalogadorgjm
dc.contributor.authorMoreno-Virgen, María del Rosario
dc.contributor.authorEscalera-Velasco, Blanca Paloma
dc.contributor.authorReynel-Ávila, Hilda Elizabeth
dc.contributor.authorGonzález-Ponce, Herson Antonio
dc.contributor.authorVidela Leiva, Álvaro Rodrigo
dc.contributor.authorMorandé Thompson, Arturo Ignacio
dc.contributor.authorLudovico-Marques, Marco
dc.contributor.authorSogari, Noemi
dc.contributor.authorBonilla-Petriciolet, Adrián
dc.date.accessioned2025-09-03T15:37:20Z
dc.date.available2025-09-03T15:37:20Z
dc.date.issued2025
dc.description.abstractLithium has emerged as a critical element in contemporary society. It has been classified as an indispensable feedstock in the manufacture of lithium-ion batteries for electric mobility, portable electronics, and stationary energy storage systems, which are essential for the integration of intermittent renewable energy sources. This metal also has other industrial applications and is projected to support future developments in semiconductor and aerospace technology. However, the exponential growth in global Li demand driven by energy transition and technological innovation requires a resilient and sustainable supply chain where both technological and environmental challenges should be addressed. This review discusses and analyzes some of current challenges associated with the Li supply chain given a particular emphasis on its separation methods. First, statistics of the Li market and its applications are provided, including the main sources from which to recover Li and the environmental impact associated with conventional Li extraction techniques from mineral ores and salar brines. Different separation methods (e.g., solvent extraction, adsorption, ion exchange, membrane technology) to recover Li from different sources are reviewed. Recent advances and developments in these separation strategies are described, including a brief analysis of their main limitations and capabilities. The importance and potential of recycling strategies for end-of-life batteries and industrial residues are also highlighted. A perspective on the gaps to be resolved with the aim of consolidating the Li supply chain to support the energy transition agenda is provided in this review.
dc.fechaingreso.objetodigital2025-09-03
dc.format.extent42 páginas
dc.fuente.origenORCID
dc.identifier.doi10.3390/min15090917
dc.identifier.urihttps://doi.org/10.3390/min15090917
dc.identifier.urihttps://repositorio.uc.cl/handle/11534/105539
dc.information.autorucEscuela de Ingeniería; Videla Leiva, Alvaro Rodrigo; 0000-0002-6785-5818; 10225
dc.information.autorucEscuela de Ingeniería; Videla Leiva, Álvaro Rodrigo; 0000-0002-6785-5818; 10225
dc.information.autorucEscuela de Ingeniería; Morandé Thompson, Arturo Ignacio; S/I; 245663
dc.issue.numero9
dc.language.isoen
dc.nota.accesocontenido completo
dc.revistaMinerals
dc.rightsacceso abierto
dc.rights.licenseCC BY 4.0 Attribution 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectEnergy transition
dc.subjectMinerals
dc.subjectLithium recovery
dc.subject.ddc550
dc.subject.deweyCiencias de la tierraes_ES
dc.subject.ods07 Affordable and clean energy
dc.subject.ods12 Responsible consuption and production
dc.subject.odspa07 Energía asequible y no contaminante
dc.subject.odspa12 Producción y consumo responsable
dc.titleAn Overview of Applications, Toxicology and Separation Methods of Lithium
dc.typeartículo
dc.volumen15
sipa.codpersvinculados10225
sipa.codpersvinculados245663
sipa.trazabilidadORCID;2025-09-01
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
minerals-15-00917-v2.pdf
Size:
1.45 MB
Format:
Adobe Portable Document Format
Description: