Short/long term assessment of precast concrete block waste as a supplementary cementitious material: mechanical performance, hydration, and microstructure evolution

dc.article.number113868
dc.catalogadorgjm
dc.contributor.authorBurbano García, Claudia Patricia
dc.contributor.authorLopez, M.
dc.contributor.authorAraya Letelier, Gerardo Andrés
dc.contributor.authorSilva Urrego, Yimmy Fernando
dc.contributor.authorZúñiga Rosales, Sebastián Alejandro
dc.contributor.authorGonzález Hormazabal, Marcelo Andrés
dc.date.accessioned2025-09-03T15:37:18Z
dc.date.available2025-09-03T15:37:18Z
dc.date.issued2025
dc.description.abstractThe massive production of cement and concrete is projected to grow significantly, with cement alone accounting for 7 %–8 % of global CO2 emissions. Reducing the environmental impact of the cement industry is critical, and low-carbon cement blends incorporating supplementary cementitious materials (SCMs) valorized from industrial wastes are a promising near-term solution. Precast concrete block waste (PCBW), an industrial waste from precast concrete plants and masonry demolition, offers potential as an SCM. This study evaluates the effects of PCBW replacement (0 %, 10 %, 20 %, and 50 % by volume) in cement paste mixtures (CPMs) on hydration and mechanical performance over short (3 days) and long (90 days) terms. The evaluation included isothermal calorimetry, compressive strength, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), differential thermogravimetric (DTG) analysis, and field-emission scanning electron microscopy. Predictive models using polynomial regression and support vector regression (SVR) were developed to estimate CPM compressive strength based on PCBW replacement levels and curing ages. Results showed that a 10 % PCBW replacement did not statistically affect CPM compressive strength, while 20 % replacement reduced it by 12 % at 90 days. XRD and FTIR analyses revealed high quartz and calcite content in PCBW, consistent with its chemical composition. DTG confirmed the low pozzolanic activity of PCBW compared to other SCMs. The predictive models demonstrated accuracy through 5-fold cross-validation. Using PCBW as an SCM up to 10 % is recommended to reduce environmental impacts without compromising mechanical performance.
dc.format.extent25 páginas
dc.fuente.origenORCID
dc.identifier.doi10.1016/j.jobe.2025.113868
dc.identifier.urihttps://doi.org/10.1016/j.jobe.2025.113868
dc.identifier.urihttps://repositorio.uc.cl/handle/11534/105536
dc.information.autorucEscuela de Construcción Civil; Silva Urrego, Yimmy Fernando; 0000-0003-3888-457X; 1197383
dc.information.autorucEscuela de Construcción Civil; Burbano García, Claudia Patricia; S/I; 1102618
dc.information.autorucEscuela de Construcción Civil; Araya Letelier, Gerardo Andrés; 0000-0003-4252-1341; 124980
dc.information.autorucEscuela de Construcción Civil; Zúñiga Rosales, Sebastián Alejandro; S/I; 221823
dc.information.autorucEscuela de Ingeniería; González Hormazabal, Marcelo Andrés; S/I; 143922
dc.language.isoen
dc.nota.accesocontenido parcial
dc.revistaJournal of Building Engineering
dc.rightsacceso restringido
dc.subjectPrecast concrete block waste
dc.subjectCompressive strength
dc.subjectFiller
dc.subjectSupplementary cementitious material
dc.subjectSustainability
dc.subject.ddc600
dc.subject.deweyTecnologíaes_ES
dc.subject.ods12 Responsible consuption and production
dc.subject.odspa12 Producción y consumo responsable
dc.titleShort/long term assessment of precast concrete block waste as a supplementary cementitious material: mechanical performance, hydration, and microstructure evolution
dc.typeartículo
dc.volumen112
sipa.codpersvinculados1197383
sipa.codpersvinculados1102618
sipa.codpersvinculados124980
sipa.codpersvinculados221823
sipa.codpersvinculados143922
sipa.trazabilidadORCID;2025-09-01
Files