Stability of semi-wavefronts for delayed reaction-diffusion equations

dc.contributor.authorSolar, Abraham
dc.date.accessioned2025-01-23T21:11:12Z
dc.date.available2025-01-23T21:11:12Z
dc.date.issued2019
dc.description.abstractThis paper deals with the asymptotic behavior of solutions to the delayed monostable equation: (*) u(t)(t, x) = u(xx)(t, x)-u(t, x)+g(u(t-h, x)), x is an element of R, t > 0; here h > 0 and the reaction term g : R+ -> R+ is Lipschitz continuous and has exactly two fixed points (zero and kappa > 0). Under certain condition on the derivative of g at kappa (without assuming classic KPP condition for g) the global stability of fast semi-wavefronts is proved. Also, when the Lipschitz constant L-g is equal to g'(0) the stability of all semi-wavefronts (e.g., critical, non-critical and asymptotically periodic semi-wavefronts) on each interval in the form (-infinity, N], N is an element of R, to (*) is established, which includes classic equations such as the Nicholson's model.
dc.description.funderFONDECYT (Chile) through the Postdoctoral Fondecyt
dc.fuente.origenWOS
dc.identifier.doi10.1007/s00030-019-0580-8
dc.identifier.eissn1420-9004
dc.identifier.issn1021-9722
dc.identifier.urihttps://doi.org/10.1007/s00030-019-0580-8
dc.identifier.urihttps://repositorio.uc.cl/handle/11534/100892
dc.identifier.wosidWOS:000483485700001
dc.issue.numero5
dc.language.isoen
dc.revistaNodea-nonlinear differential equations and applications
dc.rightsacceso restringido
dc.subjectSemi-wavefront
dc.subjectStability
dc.subjectBirth function
dc.subjectLeading edge
dc.subjectUniqueness
dc.subject.ods03 Good Health and Well-being
dc.subject.odspa03 Salud y bienestar
dc.titleStability of semi-wavefronts for delayed reaction-diffusion equations
dc.typeartículo
dc.volumen26
sipa.indexWOS
sipa.trazabilidadWOS;2025-01-12
Files