Stability of semi-wavefronts for delayed reaction-diffusion equations
dc.contributor.author | Solar, Abraham | |
dc.date.accessioned | 2025-01-23T21:11:12Z | |
dc.date.available | 2025-01-23T21:11:12Z | |
dc.date.issued | 2019 | |
dc.description.abstract | This paper deals with the asymptotic behavior of solutions to the delayed monostable equation: (*) u(t)(t, x) = u(xx)(t, x)-u(t, x)+g(u(t-h, x)), x is an element of R, t > 0; here h > 0 and the reaction term g : R+ -> R+ is Lipschitz continuous and has exactly two fixed points (zero and kappa > 0). Under certain condition on the derivative of g at kappa (without assuming classic KPP condition for g) the global stability of fast semi-wavefronts is proved. Also, when the Lipschitz constant L-g is equal to g'(0) the stability of all semi-wavefronts (e.g., critical, non-critical and asymptotically periodic semi-wavefronts) on each interval in the form (-infinity, N], N is an element of R, to (*) is established, which includes classic equations such as the Nicholson's model. | |
dc.description.funder | FONDECYT (Chile) through the Postdoctoral Fondecyt | |
dc.fuente.origen | WOS | |
dc.identifier.doi | 10.1007/s00030-019-0580-8 | |
dc.identifier.eissn | 1420-9004 | |
dc.identifier.issn | 1021-9722 | |
dc.identifier.uri | https://doi.org/10.1007/s00030-019-0580-8 | |
dc.identifier.uri | https://repositorio.uc.cl/handle/11534/100892 | |
dc.identifier.wosid | WOS:000483485700001 | |
dc.issue.numero | 5 | |
dc.language.iso | en | |
dc.revista | Nodea-nonlinear differential equations and applications | |
dc.rights | acceso restringido | |
dc.subject | Semi-wavefront | |
dc.subject | Stability | |
dc.subject | Birth function | |
dc.subject | Leading edge | |
dc.subject | Uniqueness | |
dc.subject.ods | 03 Good Health and Well-being | |
dc.subject.odspa | 03 Salud y bienestar | |
dc.title | Stability of semi-wavefronts for delayed reaction-diffusion equations | |
dc.type | artículo | |
dc.volumen | 26 | |
sipa.index | WOS | |
sipa.trazabilidad | WOS;2025-01-12 |