Distributional regression modeling via generalized additive models for location, scale, and shape: An overview through a data set from learning analytics
dc.catalogador | jca | |
dc.contributor.author | Marmolejo-Ramos, Fernando | |
dc.contributor.author | Tejo, Mauricio | |
dc.contributor.author | Brabec, Marek | |
dc.contributor.author | Kuzilek, Jakub | |
dc.contributor.author | Joksimovic, Srecko | |
dc.contributor.author | Kovanovic, Vitomir | |
dc.contributor.author | Gonzalez Burgos, Jorge | |
dc.contributor.author | Kneib, Thomas | |
dc.contributor.author | Bühlmann, Peter | |
dc.contributor.author | Kook, Lucas | |
dc.contributor.author | Briseño Sánchez, Guillermo | |
dc.contributor.author | Ospina, Raydonal | |
dc.date.accessioned | 2023-12-20T13:10:14Z | |
dc.date.available | 2023-12-20T13:10:14Z | |
dc.date.issued | 2022 | |
dc.description.abstract | The advent of technological developments is allowing to gather large amounts of data in several research fields. Learning analytics (LA)/educational data mining has access to big observational unstructured data captured from educational settings and relies mostly on unsupervised machine learning (ML) algorithms to make sense of such type of data. Generalized additive models for location, scale, and shape (GAMLSS) are a supervised statistical learning framework that allows modeling all the parameters of the distribution of the response variable with respect to the explanatory variables. This article overviews the power and flexibility of GAMLSS in relation to some ML techniques. Also, GAMLSS' capability to be tailored toward causality via causal regularization is briefly commented. This overview is illustrated via a data set from the field of LA. This article is categorized under: Application Areas > Education and Learning Algorithmic Development > Statistics Technologies > Machine Learning. | |
dc.description.funder | INICI‐UV | |
dc.description.funder | Institute of Computer Science | |
dc.description.funder | Novartis Research Foundation | |
dc.description.funder | H2020 European Research Council | |
dc.description.funder | European Research Council | |
dc.description.funder | Deutsche Forschungsgemeinschaft | |
dc.description.funder | Grantová Agentura České Republiky | |
dc.description.funder | Fondo Nacional de Desarrollo Científico y Tecnológico | |
dc.description.funder | Conselho Nacional de Desenvolvimento Científico e Tecnológico | |
dc.description.funder | Universidad de Valparaíso | |
dc.fechaingreso.objetodigital | 2023-12-20 | |
dc.fuente.origen | ORCID | |
dc.identifier.doi | 10.1002/widm.1479 | |
dc.identifier.eissn | 1942-24795 | |
dc.identifier.issn | 19424795 19424787 | |
dc.identifier.scopusid | SCOPUS_ID:85140231241 | |
dc.identifier.uri | https://doi.org/10.1002/widm.1479 | |
dc.identifier.uri | http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)1942-4795 | |
dc.identifier.uri | https://repositorio.uc.cl/handle/11534/75550 | |
dc.identifier.wosid | WOS:000870901000001 | |
dc.information.autoruc | Facultad de Matemáticas; Gonzalez Burgos, Jorge; 0000-0003-0415-3795; 15102 | |
dc.language.iso | en | |
dc.nota.acceso | Contenido completo | |
dc.publisher | John Wiley and Sons Inc | |
dc.relation.ispartof | Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery | |
dc.revista | Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery | |
dc.rights | acceso abierto | |
dc.subject | Causal regularization | |
dc.subject | Causality | |
dc.subject | Educational data mining | |
dc.subject | Generalized additive models for location, scale, and shape | |
dc.subject | Learning analytics | |
dc.subject | Machine learning | |
dc.subject | Statistical learning | |
dc.subject | Statistical modeling | |
dc.subject | Supervised learning | |
dc.subject.ddc | 620 | |
dc.subject.dewey | Ingeniería | es_ES |
dc.subject.ods | 03 Good health and well-being | |
dc.subject.odspa | 03 Salud y bienestar | |
dc.title | Distributional regression modeling via generalized additive models for location, scale, and shape: An overview through a data set from learning analytics | |
dc.type | artículo | |
sipa.codpersvinculados | 15102 | |
sipa.trazabilidad | ORCID;2023-12-18 |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- Distributional regressional.pdf
- Size:
- 3.49 MB
- Format:
- Adobe Portable Document Format
- Description: