Aubin-Nitsche-type estimates for space-time FOSLS for parabolic PDEs ☆

dc.catalogadorvzp
dc.contributor.authorFührer, Thomas
dc.contributor.authorGantner, Gregor
dc.date.accessioned2025-05-05T13:12:50Z
dc.date.available2025-05-05T13:12:50Z
dc.date.issued2025
dc.description.abstractWe develop Aubin-Nitsche-type estimates for recently proposed first-order system least-squares finite element methods (FOSLS) for the heat equation. Under certain assumptions, which are satisfied if the spatial domain is convex and the heat source and initial datum are sufficiently smooth, we prove that the L2 error of approximations of the scalar field variable converges at a higher rate than the overall error. Furthermore, a higher-order conservation property is shown. In addition, we discuss quasi-optimality in weaker norms. Numerical experiments confirm our theoretical findings.
dc.format.extent16 páginas
dc.fuente.origenWOS
dc.identifier.doi10.1016/j.camwa.2025.03.017
dc.identifier.eissn1873-7668
dc.identifier.issn0898-1221
dc.identifier.urihttps://doi.org/10.1016/j.camwa.2025.03.017
dc.identifier.urihttps://repositorio.uc.cl/handle/11534/104006
dc.identifier.wosidWOS:001460643600001
dc.information.autorucFacultad de Matemáticas; Führer, Thomas; 0000-0001-5034-6593; 250324
dc.language.isoen
dc.nota.accesocontenido parcial
dc.pagina.final170
dc.pagina.inicio155
dc.publisherPERGAMON-ELSEVIER SCIENCE LTD
dc.revistaCOMPUTERS & MATHEMATICS WITH APPLICATIONS
dc.rightsacceso restringido
dc.subjectSpace-time FOSLS
dc.subjectParabolic PDEs
dc.subjectAubin-Nitsche duality arguments
dc.subjectCommuting diagram
dc.subject.ddc510
dc.subject.deweyMatemática física y químicaes_ES
dc.titleAubin-Nitsche-type estimates for space-time FOSLS for parabolic PDEs ☆
dc.typeartículo
dc.volumen186
sipa.codpersvinculados250324
sipa.trazabilidadWOS;2025-04-12
Files