Optical characterization of single molecules for quantum technologies

Abstract
In this thesis, the optical properties of Vanadium Oxide Phthalocyanine (VOPc) molecules were studied using a home-built confocal microscope setup. Single VOPc molecules were successfully isolated and identified by their distinct diffraction-limited spots. Two sample preparation techniques were compared: spin coating and ion exchange. Spin coating produced less density of spots, while ion exchange resulted in more photostable spots.The emission spectra of the isolated spots were consistent with the known spectrum of VOPc, showing two peaks around 855 nm and 877 nm. The polarization response of the molecules indicated that they are randomly oriented in the sample. The lifetime of VOPc molecules was measured using time-correlated single photon counting (TCSPC), revealing an unexpected oscillatory behavior at high excitation powers, which disappeared at lower powers. This behavior suggests that the oscillation might be due to the laser's stability or noise. The lifetimes measured in an ensemble of VOPc were τ1 = 0.038 ns and τ2 = 0.221 ns for a power of 3.5 μW, and τ1 = 0.034 ns and τ2 = 0.084 ns. This power dependence on the excitation power is not the expected behavior as the lifetime should be a fixed characteristic of the molecule. Overall, the study provided valuable insights into the optical properties and isolation of VOPc molecules. Future work could focus on measuring the saturation curve of the fluorescence, confirming the presence of single molecules using second-order autocorrelation, and investigating the interaction of VOPc molecules with magnetic fields for potential applications in quantum technologies.
Description
Tesis (Master’s degree in Physics)--Pontificia Universidad Católica de Chile, 2025.
Keywords
Citation