Rate of convergence estimates for the spectral approximation of a generalized eigenvalue problem

dc.contributor.authorConca, C
dc.contributor.authorDuran, M
dc.contributor.authorRappaz, J
dc.date.accessioned2025-01-21T01:32:43Z
dc.date.available2025-01-21T01:32:43Z
dc.date.issued1998
dc.description.abstractThe aim of this work is to derive rate of convergence estimates for the spectral approximation of a mathematical model which describes the vibrations of a solid-fluid type structure. First, we summarize the main theoretical results and the discretization of this variational eigenvalue problem. Then, we state some well known abstract theorems on spectral approximation and apply them to our specific problem, which allow us to obtain the desired spectral convergence. By using classical regularity results, we are able to establish estimates for the rate of convergence of the approximated eigenvalues and for the gap between generalized eigenspaces.
dc.fuente.origenWOS
dc.identifier.issn0029-599X
dc.identifier.urihttps://repositorio.uc.cl/handle/11534/97311
dc.identifier.wosidWOS:000073961500002
dc.issue.numero3
dc.language.isoen
dc.pagina.final369
dc.pagina.inicio349
dc.revistaNumerische mathematik
dc.rightsacceso restringido
dc.titleRate of convergence estimates for the spectral approximation of a generalized eigenvalue problem
dc.typeartículo
dc.volumen79
sipa.indexWOS
sipa.trazabilidadWOS;2025-01-12
Files