Variational estimates for the speed propagation of fronts in a nonlinear diffusive Fisher equation

dc.contributor.authorBenguria, Rafael D.
dc.contributor.authorDepassier, M. Cristina
dc.contributor.authorRica, Sergio
dc.date.accessioned2025-01-20T21:01:39Z
dc.date.available2025-01-20T21:01:39Z
dc.date.issued2022
dc.description.abstractWe examine non-linear diffusive front propagation in the frame of the Fisher-type equation: dtu = dx (D(u)dxu)+ u(1 - u). We study the problem of a sudden jump in diffusivity motivated by models of glassy polymers. It is shown that this problem differs substantially from the problem of front propagation in the usual Fisher equation which was solved by Kolmogorov, Petrovsky, and Piskunov (KPP) in 1937. As in the Fisher, Kolmogorov, Petrovsky, Piskunov (FKPP) problem, the asymptotic dynamics of the non linear diffusive front propagation is reduced to the study of a nonlinear ordinary differential equation with adequate boundary conditions. Since this problem does not allow an exact result for the propagation speed, we use a variational approach to estimate the front speed and compare it with direct time-dependent numerical simulations showing an excellent agreement.
dc.description.funderFONDECYT (Chile)
dc.fuente.origenWOS
dc.identifier.doi10.1016/j.chaos.2022.112668
dc.identifier.eissn1873-2887
dc.identifier.issn0960-0779
dc.identifier.urihttps://doi.org/10.1016/j.chaos.2022.112668
dc.identifier.urihttps://repositorio.uc.cl/handle/11534/92930
dc.identifier.wosidWOS:000868160600004
dc.language.isoen
dc.revistaChaos solitons & fractals
dc.rightsacceso restringido
dc.subjectFront Propagation
dc.subjectVariational estimates
dc.subjectNon-linear diffusivity
dc.subjectFisher equation
dc.subject.ods13 Climate Action
dc.subject.odspa13 Acción por el clima
dc.titleVariational estimates for the speed propagation of fronts in a nonlinear diffusive Fisher equation
dc.typeartículo
dc.volumen164
sipa.indexWOS
sipa.trazabilidadWOS;2025-01-12
Files