Tunneling Estimates for Two-Dimensional Perturbed Magnetic Dirac Systems

dc.contributor.authorCardenas, Esteban
dc.contributor.authorPavez, Benjamin
dc.contributor.authorStockmeyer, Edgardo
dc.date.accessioned2025-01-20T16:08:59Z
dc.date.available2025-01-20T16:08:59Z
dc.date.issued2024
dc.description.abstractWe prove tunneling estimates for two-dimensional Dirac systems which are localized in space due to the presence of a magnetic field. The Hamiltonian driving the motion admits the decomposition H=H0+W\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ H = H_0 + W$$\end{document}, where H0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_0 $$\end{document} is a rotationally symmetric magnetic Dirac operator and W is a position-dependent matrix-valued potential satisfying certain smoothness condition in the angular variable. A consequence of our results are upper bounds for the growth in time of the expected size of the system and its total angular momentum.
dc.fuente.origenWOS
dc.identifier.doi10.1007/s00023-024-01480-9
dc.identifier.eissn1424-0661
dc.identifier.issn1424-0637
dc.identifier.urihttps://doi.org/10.1007/s00023-024-01480-9
dc.identifier.urihttps://repositorio.uc.cl/handle/11534/90122
dc.identifier.wosidWOS:001306187900001
dc.language.isoen
dc.revistaAnnales henri poincare
dc.rightsacceso restringido
dc.titleTunneling Estimates for Two-Dimensional Perturbed Magnetic Dirac Systems
dc.typeartículo
sipa.indexWOS
sipa.trazabilidadWOS;2025-01-12
Files