Tunneling Estimates for Two-Dimensional Perturbed Magnetic Dirac Systems
dc.contributor.author | Cardenas, Esteban | |
dc.contributor.author | Pavez, Benjamin | |
dc.contributor.author | Stockmeyer, Edgardo | |
dc.date.accessioned | 2025-01-20T16:08:59Z | |
dc.date.available | 2025-01-20T16:08:59Z | |
dc.date.issued | 2024 | |
dc.description.abstract | We prove tunneling estimates for two-dimensional Dirac systems which are localized in space due to the presence of a magnetic field. The Hamiltonian driving the motion admits the decomposition H=H0+W\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ H = H_0 + W$$\end{document}, where H0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_0 $$\end{document} is a rotationally symmetric magnetic Dirac operator and W is a position-dependent matrix-valued potential satisfying certain smoothness condition in the angular variable. A consequence of our results are upper bounds for the growth in time of the expected size of the system and its total angular momentum. | |
dc.fuente.origen | WOS | |
dc.identifier.doi | 10.1007/s00023-024-01480-9 | |
dc.identifier.eissn | 1424-0661 | |
dc.identifier.issn | 1424-0637 | |
dc.identifier.uri | https://doi.org/10.1007/s00023-024-01480-9 | |
dc.identifier.uri | https://repositorio.uc.cl/handle/11534/90122 | |
dc.identifier.wosid | WOS:001306187900001 | |
dc.language.iso | en | |
dc.revista | Annales henri poincare | |
dc.rights | acceso restringido | |
dc.title | Tunneling Estimates for Two-Dimensional Perturbed Magnetic Dirac Systems | |
dc.type | artículo | |
sipa.index | WOS | |
sipa.trazabilidad | WOS;2025-01-12 |