The morphology of the X-ray afterglows and of the jetted GeV emission in long GRBs

dc.contributor.authorRuffini, R.
dc.contributor.authorMoradi, R.
dc.contributor.authorRueda, J. A.
dc.contributor.authorLi, L.
dc.contributor.authorSahakyan, N.
dc.contributor.authorChen, Y-C
dc.contributor.authorWang, Y.
dc.contributor.authorAimuratov, Y.
dc.contributor.authorBecerra, L.
dc.contributor.authorBianco, C. L.
dc.contributor.authorCherubini, C.
dc.contributor.authorFilippi, S.
dc.contributor.authorKarlica, M.
dc.contributor.authorMathews, G. J.
dc.contributor.authorMuccino, M.
dc.contributor.authorPisani, G. B.
dc.contributor.authorXue, S. S.
dc.date.accessioned2025-01-20T22:02:25Z
dc.date.available2025-01-20T22:02:25Z
dc.date.issued2021
dc.description.abstractWe recall evidence that long gamma-ray bursts (GRBs) have binary progenitors and give new examples. Binary-driven hypernovae (BdHNe) consist of a carbon-oxygen core (COcore) and a neutron star (NS) companion. For binary periods similar to 5 min, the COcore collapse originates the subclass BdHN I characterized by (1) an outstanding supernova (SN; the 'SN-rise'); (2) a black hole (BH), born from the NS collapse by SN matter accretion, leading to a GeV emission with luminosity L-GeV = A(GeV) t(-alpha GeV), observed only in some cases; and (3) a new NS (nu NS), born from the SN, originating from the X-ray afterglow with L-X = A(X) t(-alpha X), observed in all BdHN I. We record 378 sources and present for four prototype GRBs 130427A, 160509A, 180720B, and 190114C: (1) spectra, luminosities, SN-rise duration; (2) A(GeV), alpha(GeV) = 1.48 +/- 0.32, and (3) the vNS spin time evolution. We infer (i) A(GeV), alpha(GeV) = 1.19 +/- 0.04 and (ii) the BdHN I morphology from time-resolved spectral analysis, three-dimensional simulations, and the GeV emission presence/absence in 54 sources within the Fermi-Large Area Telescope boresight angle. For 25 sources, we give the integrated and time-varying GeV emission, 29 sources have no GeV emission detected and show X/gamma-ray flares previously inferred as observed along the binary plane. The 25/54 ratio implies the GeV radiation is emitted within a cone of half-opening angle approximate to 60 degrees from the normal to the orbital plane. We deduce BH masses of 2.3-8.9 M-circle dot and spin of 0.27-0.87 by explaining the GeV emission from the BH rotational energy extraction, while their time evolution validates the BH mass-energy formula.
dc.fuente.origenWOS
dc.identifier.doi10.1093/mnras/stab724
dc.identifier.eissn1365-2966
dc.identifier.issn0035-8711
dc.identifier.urihttps://doi.org/10.1093/mnras/stab724
dc.identifier.urihttps://repositorio.uc.cl/handle/11534/93979
dc.identifier.wosidWOS:000661537200046
dc.issue.numero4
dc.language.isoen
dc.pagina.final5326
dc.pagina.inicio5301
dc.revistaMonthly notices of the royal astronomical society
dc.rightsacceso restringido
dc.subjectblack hole physics
dc.subjectbinaries: general
dc.subjectgamma-ray bursts
dc.subjecttransients: supernovae
dc.titleThe morphology of the X-ray afterglows and of the jetted GeV emission in long GRBs
dc.typeartículo
dc.volumen504
sipa.indexWOS
sipa.trazabilidadWOS;2025-01-12
Files