Evaporation Driven by Atmospheric Boundary Layer Processes over a Shallow Saltwater Lagoon in the Altiplano

dc.catalogadorpau
dc.contributor.authorAguirre Correa, Francisca
dc.contributor.authorVilà-Guerau de Arellano, Jordi
dc.contributor.authorRonda, Reinder
dc.contributor.authorLobos Roco, Felipe
dc.contributor.authorSuárez, Francisco
dc.contributor.authorHartogensis, Oscar
dc.date.accessioned2025-06-12T18:13:23Z
dc.date.available2025-06-12T18:13:23Z
dc.description.abstractObservations over a saltwater lagoon in the Altiplano show that evaporation E is triggered at noon, concurrent to the transition of a shallow, stable atmospheric boundary layer (ABL) into a deep mixed layer. We investigate the coupling between the ABL and E drivers using a land–atmosphere conceptual model, observations, and a regional model. Additionally, we analyze the ABL interaction with the aerodynamic and radiative components of evaporation using the Penman equation adapted to saltwater. Our results demonstrate that nonlocal processes are dominant in driving E. In the morning, the ABL is controlled by the local advection of warm air (∼5 K h−1), which results in a shallow (<350 m), stable ABL, with virtually no mixing and no E (<50 W m−2). The warm-air advection ultimately connects the ABL with the residual layer above, increasing the ABL height h by ∼1 km. At midday, a thermally driven regional flow arrives to the lagoon, which first advects a deeper ABL from the surrounding desert (∼1500 m h−1) that leads to an extra ∼700-m h increase. The regional flow also causes an increase in wind (∼12 m s−1) and an ABL collapse due to the entrance of cold air (∼−2 K h−1) with a shallower ABL (∼−350 m h−1). The turbulence produced by the wind decreases the aerodynamic resistance and mixes the water body releasing the energy previously stored in the lake. The ABL feedback on E through vapor pressure enables high evaporation values (∼450 W m−2 at 1430 LT). These results contribute to the understanding of E of water bodies in semiarid conditions and emphasize the importance of understanding ABL processes when describing evaporation drivers.
dc.fechaingreso.objetodigital2025-06-12
dc.format.extent22 páginas
dc.identifier.doi10.1175/JHM-D-23-0105.1
dc.identifier.urihttps://doi.org/10.1175/JHM-D-23-0105.1
dc.identifier.urihttps://repositorio.uc.cl/handle/11534/104659
dc.information.autorucEscuela de Ingeniería; Aguirre Correa, Francisca; 0000-0001-5346-4472; 245616
dc.information.autorucInstituto de Geografía; Lobos Roco, Felipe; S/I; 157192
dc.information.autorucEscuela de Ingeniería; Suárez, Francisco; S/I; 208615
dc.issue.numero8
dc.language.isoen
dc.nota.accesocontenido completo
dc.revistaJournal of Hydrometeorology
dc.rightsacceso abierto
dc.subjectVaporation
dc.subjectAtmosphere-land interaction
dc.subjectAdvection
dc.subjectComplex terrain
dc.subjectSalinity
dc.subject.ddc550
dc.titleEvaporation Driven by Atmospheric Boundary Layer Processes over a Shallow Saltwater Lagoon in the Altiplano
dc.typeartículo
dc.volumen25
sipa.codpersvinculados245616
sipa.codpersvinculados157192
sipa.codpersvinculados208615
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
evaporation driven by atmospheric boundary layer.pdf
Size:
33.41 MB
Format:
Adobe Portable Document Format
Description: