Facultad de Matemáticas
Permanent URI for this community
Browse
Browsing Facultad de Matemáticas by Subject "510"
Now showing 1 - 20 of 25
Results Per Page
Sort Options
- ItemAlmost 1-1 extensions, equicontinuous systems and residually finite groups(2024) Gómez Ortiz, Jaime Andrés; Cortéz, María Isabel; Pontificia Universidad Católica de Chile. Facultad de MatemáticasThe purpose of this document is to present our study on the various properties of almost 1-1 extensions of G-odometers with regards to the realization of Choquet simplices, mean-equicontinuity, and the construction of specific almost 1-1 exten- sions of equicontinuous systems. These systems can be viewed as a topological generalization of equicontinuous systems with diverse behavior on some aspects as entropy, the set of probability invariant measures, and more. Each problem is addressed within a general framework without assuming any amenable property on the acting group, except for the last problem where amenability was essential for constructing a specific type of almost 1-1 extensions. This thesis is divided into three parts, with the first two chapters presenting the results of two different manuscripts that are published and submitted, respectively.
- ItemArithmetic of Drinfeld modules(2025) Alvarado Torres, Matías Nicolás; Pasten Vásquez, Héctor Hardy; Pontificia Universidad Católica de Chile. Facultad de MatemáticasDrinfeld modules, introduced by Vladimir Drinfeld in the 1970s, have become acornerstone in the arithmetic of global function fields. These objects serve as thefunction field analogues of elliptic curves and abelian varieties, but with a structure thatis uniquely adapted to the arithmetic of positive characteristic. Defined over rings offunctions rather than number fields, Drinfeld modules allow for the development of arich arithmetic theory that mirrors, and in many ways extends, the classical theory ofelliptic curves. Their moduli spaces, Galois representations, and associated L-functionshave all been studied extensively, revealing deep analogies with the number field caseand offering new phenomena unique to the function field setting. From an arithmeticstandpoint, Drinfeld modules provide explicit realizations of class field theory for globalfunction fields, particularly through the theory of Hayes modules and the use of shtukas.They give rise to Galois representations whose image and ramification behavior encodesignificant arithmetic information. Moreover, the theory of heights and canonical measuresassociated with Drinfeld modules has led to important results in Diophantine geometry,such as analogues of the Mordell-Weil theorem and the Bogomolov conjecture in positivecharacteristic. Beyond their arithmetic significance, Drinfeld modules also exhibit a richdynamical structure.
- ItemBilinear Form Test: Theoretical Properties and Applications(2025) Gárate Barraza, Ángelo Fabián; Galea Rojas, Manuel Jesús; Osorio, Felipe; Pontificia Universidad Católica de Chile. Facultad de MatemáticasThe present thesis investigates the Bilinear Form Test (BF Test) as a robust statistical tool for evaluating parameter constraints across various models. It examines the test's theoretical foundations, with a particular focus on its invariance under reparameterizations and its performance in finite-sample settings. By leveraging bilinear forms, the BF Test provides an alternative to likelihood-based methods, employing an asymptotic chi-squared distribution that simplifies hypothesis testing. Monte Carlo simulations and empirical applications—including its use in financial models like the Capital Asset Pricing Model (CAPM) and in Generalized Estimating Equations (GEE) for correlated data—demonstrate the method’s efficiency, robustness, and versatility. Key contributions of this work include a detailed exploration of the BF Test's theoretical properties, validation of its invariance across different model structures, and a comprehensive comparison with traditional testing approaches, alongside proposed extensions for future research.
- ItemC*-algebric methods for transport phenomena(2023) Polo Ojito, Danilo; De Nittis, Giuseppe; Pontificia Universidad Católica de Chile. Facultad de Matemáticas
- ItemContributions to the singular perturbation theory of infinite-dimensional coupled systems(2025) Arias Neira, Gonzalo Andrés; Cerpa, Eduardo; Marx, Swann; Pontificia Universidad Católica de Chile. Facultad de MatemáticasSingular perturbation and separation of time scales methods have been used to study the stability and control design for coupled ODE systems with different time scales for many years. This important literature was motivated by the fact that systems with significantly different time scales appear in several applications, in which the constituents of a coupled system may model different physical phenomena taking place in different time scales. The singular perturbation method (SPM), roughly speaking, aims to decouple a full system into two approximated subsystems based on a suitable time-scale separation. This thesis addresses problems concerning the stability, Tikhonov's approximation, stabilization, and control of singularly perturbed coupled infinite-dimensional systems.
- ItemEquilibrium states and asymptotic variance for geometric potentials(2025) Arévalo Hurtado, Nicolás; Iommi Echeverría, Godofredo; Pontificia Universidad Católica de Chile. Facultad de MatemáticasEn esta tesis abordamos tres problemas dentro del marco del formalismo termodinámico. En primer lugar, estudiamos el espectro de Lyapunov de las aplicaciones de Markov-Rényi-Lüroth en el intervalo, una familia de aplicaciones de intervalo de tipo Markov numerables que pueden presentar simultáneamente puntos fijos parabólicos y una discontinuidad en la presión topológica asociada al potencial geométrico. En segundo lugar, investigamos la existencia de estados de equilibrio para una familia de aplicaciones monótonas a trozos con convexidad promedio. Estas aplicaciones pueden tener puntos fijos parabólicos, particiones no Markovianas y un potencial geométrico que no es necesariamente Hölder continuo. Finalmente, analizamos la varianza asintótica para transformaciones abiertas, topológicamente transitivas y expansivas en espacios métricos compactos. Proporcionamos nuevas cotas para las diferencias en desigualdades de media potencia para potenciales Hölder continuos, expresadas en términos de la varianza asintótica.
- ItemEssential minimum in families(2023) Morales Inostroza, Marcos; Kiwi Krauskopf, Jan Beno; Sombra, Martín; Pontificia Universidad Católica de Chile. Facultad de Matemáticas
- ItemFibred non-hyperbolic quadratic families(2024) Domínguez Calderón, Igsyl; Ponce Acevedo, Mario; Pontificia Universidad Católica de Chile. Facultad de MatemáticasThe aim of this thesis is two-folding. In the initial instance, we have made signifIcant progress in the problem of density of hyperbolic components within the context of fibred quadratic polynomial dynamics by demonstrating the existence of robust non- hyperbolic fibred quadratic polynomials. Secondly, we present a more complex class of invariant sets that are distinct from the invariant curves for fibred polynomial dynamics, called multi-curves. Furthermore, a construction for multi-curves in quadratic polynomial dynamics is shown, resulting in the attainment of not only invariant multi-curves, but also with the characteristic of being attracting.
- ItemFlexible spatio-temporal strategies for modeling mosquito-borne diseases(2024) Pavani, Jessica Letícia; Quintana Quintana, Fernando; Pontificia Universidad Católica de Chile. Facultad de MatemáticasGrowing awareness of environmental threats has encouraged researchers to increasingly focus on analyzing spatial and temporal patterns of diseases, including vector-borne diseases. A byproduct of this is the also increased interest in cluster analysis. Over the last few decades, the frequency and magnitude of disease outbreaks caused by insects have increased dramatically. In addition to areas that are recurrently affected, outbreaks are spreading into regions that were previously unaffected. Faced with such a scenario, clustering analysis is essential for recognizing areas and times with high disease incidence, thus aiding in intervention planning. Moreover, the increasing availability of large datasets of high quality has culminated in the emergence of more sophisticated statistical models and methods. In response to this need, we have developed some flexible Bayesian approaches whose main goal is to identify and cluster neighboring regions where the infection behaves similarly, and to evaluate how the spatial clustering pattern changes over time. To begin with, we develop a technique for recognizing and grouping regions that display similar time-based patterns for a specific disease. Our method employs product partition models that take into account the influence of neighboring regions to cluster geographical data. This prior is tied to temporal modeling, as it aligns the classification of regions with their time trends. Consequently, the temporal coefficients are common among areas within the same cluster. Furthermore, we introduce a directed acyclic graph structure to manage the spatial dependencies among these regions. As a contribution to the literature on multivariate data, we extend the first approach to jointly modeling multiple diseases, explicitly accounting for potential space-time correlations between them. In this case, we employ a multivariate directed acyclic graph autoregressive framework to capture both spatial and inter-disease dependencies. In the initial two models, the spatial cluster stays unchanged throughout time. However, the challenge of modeling intensifies when we attempt to examine temporal changes across different spatial partitions. To address this, we introduce a model for time-dependent sequences of spatial random partitions, establishing a prior based on product partition models that correlate spatial configurations. By utilizing random spanning trees as a methodological tool, we ease the exploration of the complex partition search space. We validate the properties of all models through simulation studies, demonstrating its competitive performance against alternative approaches. Furthermore, we apply them to mosquito-borne diseases dataset in the Brazilian Southeast region.
- ItemInference from RDS data over Directed Networks(2023) Sepúlveda Peñaloza, Alejandro Adrián; Beaudry, Isabelle; Pontificia Universidad Católica de Chile. Facultad de MatemáticaEl muestreo dirigido por los encuestados (Respondent-Driven Sampling, RDS) es una técnica utilizada para recolectar datos de poblaciones humanas socialmente conectadas que no tienen un marco de muestreo definido. Un paso fundamental para realizar inferencias basadas en el diseño de datos RDS es estimar las probabilidades de muestreo. Tradicionalmente, se ha asumido que una cadena de Markov de primer orden sobre una red completamente conectada y no dirigida representa adecuadamente el RDS. Sin embargo, este modelo simplificado no tiene en cuenta que la red puede ser dirigida y homofílica. Este trabajo propone métodos para abordar estos problemas y estimar la prevalencia de un estado de infección en redes de este tipo.Las principales contribuciones metodológicas de esta tesis son tres: primero, la introducción de un modelo de configuración de red parcialmente dirigida y homofílica; segundo, el desarrollo de dos representaciones matemáticas del proceso de muestreo RDS en el modelo propuesto; y tercero, la propuesta de un modelo bayesiano que considera una red dirigida y el número de conexiones entre nodos infectados y no infectados para estimar la prevalencia del estado de infección.Se realizaron estudios de simulación para demostrar que las probabilidades de muestreo resultantes con nuestras propuestas son similares a las del RDS tradicional, mejorando la estimación de prevalencia bajo diversos escenarios realistas, asumiendo que dichas probabilidades son conocidas. La estimación de la prevalencia del estado de infección se realiza bajo fuertes suposiciones sobre la red, como la ausencia de homofilia o la dirección de los bordes.Para la aplicación del modelo, se utilizó la teoría de copulas, el modelamiento de distribuciones marginales y un modelo de superpoblación para estimar información a partir de datos no observados de la red. Las simulaciones realizadas mostraron una mejora en la estimación de la prevalencia del estado de infección en términos de sesgo y variabilidad utilizando datos de RDS.
- ItemMathematical analysis and applications of neural networks, with applications to image reconstruction(2025) Molina Mejía, Juan José; Courdurier, Matías; Pontificia Universidad Católica de Chile. Facultad de MatemáticasThis thesis explores two fundamental aspects of neural networks: their frequency learning behavior and their application to quantitative Magnetic Resonance Imaging (MRI) reconstruction. The first part investigates the phenomenon of frequency bias, the empirical observation that neural networks tend to learn low-frequency components of a target function more rapidly than high-frequency ones. To provide a rigorous understanding of this behavior, we develop a theoretical framework based on Fourier analysis. Specifically, we derive a partial differential equation that governs the evolution of the error spectrum during training in the Neural Tangent Kernel regime, focusing on two-layer neural networks. Our analysis centers on Fourier Feature networks, a class of architectures where the first layer applies sine and cosine activations using pre-defined frequency distributions. We demonstrate that the network's initialization, particularly the initial density distribution of first-layer weights, plays a crucial role in shaping the frequency learning dynamics. This insight provides a principled way to control or even eliminate frequency bias during training. Theoretical predictions are validated through numerical experiments, which further illustrate the impact of initialization on the inductive biases of neural networks.The second part of the thesis applies neural network techniques to the reconstruction of quantitative MRI data. Quantitative MRI enables the estimation of tissue-specific parameters (e.g., T1, T2, and T2*) that are vital for clinical diagnosis and disease monitoring. However, these methods typically require long acquisition times, which are often mitigated through aggressive undersampling of k-space data. Undersampling, in turn, introduces reconstruction artifacts that must be addressed through regularization. To this end, we propose CConnect, a novel iterative reconstruction method that incorporates convolutional neural networks into the regularization term. CConnect connects multiple CNNs through a shared latent space, allowing the model to capture common structures across different image contrasts. This design enables the effective suppression of aliasing artifacts and improves image quality, even in highly undersampled scenarios. We evaluate CConnect on in-vivo brain T2*-weighted MRI data, demonstrating its superiority over classical low-rank and total variation methods, as well as standard deep learning baselines.
- ItemMedidas de acuerdo bajo el modelo estructural multivariado(2022) Ávila Albornoz, Julio Cesar; Galea Rojas, Manuel Jesús; Pontificia Universidad Católica de Chile. Facultad de MatemáticasEn biometría, ingeniería, medicina y otras áreas es común disponer de distintos instrumentos que midan alguna característica en una unidad experimental. En ocasiones, un nuevo instrumento es propuesto como una alternativa más económica o práctica respecto al instrumento estándar. Si ambos trabajan en una misma escala, es deseable medir el grado de acuerdo o de concordancia que alcanzan. En este contexto, existen varias propuestas para medir el acuerdo entre instrumentos de las cuales se profundizaría en: El Coeficiente de Correlación de Concordancia (CCC) y la Probabilidad de Acuerdo (PA). Las mediciones de los instrumentos pueden estar sujetas a error en la medición. Si estos errores de medición no fueran considerados, las inferencias realizadas podrían estar comprometidas o ser incorrectas. Los Modelos con Error de Medición (MEM) permiten incorporar la incertidumbre que el proceso de medición pueda tener. Una aplicación de los MEM es el modelo de calibración en su versión estructural. Para modelar el error de medición, los MEM asumen una distribución multivariante, siendo la distribución Normal multivariada de gran utilidad en varias aplicaciones. Sin embargo, en presencia de colas pesadas o de datos atípicos, la suposición de normalidad puede ser poco adecuada llevando a comprometer los resultados. Una manera de afrontar este problema es emplear la distribución t multivariada considerada como una extensión de la distribución Normal multivariada. El objetivo de este trabajo es desarrollar bajo el Modelo Estructural Multivariado, herramientas de inferencia estadística para las medidas de acuerdo: CCC y PA. El Modelo Estructural considera el uso de la distribución Normal Multivariada y la t multivariada. Las herramientas estadísticas fueron aplicadas a conjuntos de datos clásicos en la comparación de instrumentos y además, en aplicaciones financieras como el retorno de acciones y las proyecciones del tipo de cambio por parte de operadores financieros.
- ItemMétodos DPG para el problema quad-curl(2024) Herrera Ortiz, Pablo; Heuer, Norbert; Führer, Thomas; Pontificia Universidad Católica de Chile. Facultad de MatemáticasLos problemas relevantes de la magnetohidrodinámica y la dispersión electromagnética utilizan operadores diferenciales de cuarto orden de tipo rotacional, generalmente denominados operadores quad-curl. Su uso requiere métodos de aproximación numérica. En el caso de los operadores quad-curl, la literatura correspondiente es escasa. La discretización de operadores de cuarto orden es difícil debido al requisito de regularidad para las aproximaciones conformes y la presencia de kernels no triviales. Proponemos emplear el método de Petrov-Galerkin discontinuo (método DPG) con funciones de test óptimas. Este es un marco propuesto por Demkowicz y Gopalakrishnan que tiene como objetivo la estabilidad discreta automática de los esquemas de aproximación.El trabajo está dividido en tres partes. La primera parte examina el problema quad-div en dos y tres dimensiones, mostrando su relación con el operador quad-curl $Curl^4$ en el caso 2D. Presentamos el problema como sistemas de primer y segundo orden. Adicionalmente, proporcionamos un método completamente discreto y realizamos un experimento numérico para el caso adaptativo. En la segunda parte, escribimos el operador quad-curl como $-\Curl\Delta\Curl$, formulamos el problema como un sistema de segundo orden y proporcionamos una formulación variacional ultra-débil. Utilizamos los operadores de Fortin del método DPG para el problema de Kirchhoff--Love en 2D para analizar el esquema completamente discreto. Mostramos una aplicación al problema de Stokes en 2D con cargas en $L_2$ y $H^{-1}$. En la tercera parte, estudiamos directamente el operador $\Curl^4$ en 3D como un sistema de segundo orden y proporcionamos una formulación variacional ultra-débil. En este caso, la existencia de un operador de Fortin es un problema abierto.A lo largo de la tesis, empleamos el marco teórico DPG con formulaciones ultra-débiles. La mayor parte de nuestro análisis se centra en estudiar los operadores de traza, los espacios de traza y los saltos. Estos son claves para caracterizar la regularidad, la conformidad y las condiciones de contorno. Desarrollamos operadores de Fortin los cuales son necesarios para la estabilidad de las formulaciones mixtas. Para todos los casos definimos y analizamos los operadores de traza y espacios necesarios, demostramos el buen planteamiento de las formulaciones variacionales y su discretización, y derivamos estimaciones de error a priori.También examinamos técnicas para la inclusión de condiciones de contorno no homogéneas.Proporcionamos experimentos numéricos para todos los problemas y formulaciones. Estos confirman las propiedades de convergencia esperadas.
- ItemModelo con error de medición two-piece normal.(2019) Santoro Pizarro, Karol I.; Arellano Valle, Reinaldo Boris; Pontificia Universidad Católica de Chile. Facultad de MatemáticasEn este trabajo se discute el modelo simple con errores de medición y una extensión multivariada, donde se considera principalmente el modelo estructual, suponiendo que el error de la regresión de respuesta sigue una distribución de dos piezas. Después de confi gurar una fórmula general para distribuciones de dos piezas, nos centramos en el caso donde la densidad base es una distribución normal. Lo interesante de usar como densidad base la distribución normal, es que el desarrollo entrega una mezcla de dos componentes de distribuciones skew-normal multivariada. Esta conexión facilita la construcción de un algoritmo tipo EM para realizar la estimación de máxima verosimilitud. Se obtiene la función de probabilidad de los datos observados, que se puede maximizar mediante el uso de software estadístico existente. Inferencia sobre los parámetros de interés puede ser abordado mediante el uso de la matriz de información observada, que también se puede calcular mediante el uso de software estadístico existente. Finalmente, se realiza algunas ilustraciones numéricas de la metodología, utilizando datos simulados y reales.En este trabajo se discute el modelo simple con errores de medición y una extensión multivariada, donde se considera principalmente el modelo estructual, suponiendo que el error de la regresión de respuesta sigue una distribución de dos piezas. Después de confi gurar una fórmula general para distribuciones de dos piezas, nos centramos en el caso donde la densidad base es una distribución normal. Lo interesante de usar como densidad base la distribución normal, es que el desarrollo entrega una mezcla de dos componentes de distribuciones skew-normal multivariada. Esta conexión facilita la construcción de un algoritmo tipo EM para realizar la estimación de máxima verosimilitud. Se obtiene la función de probabilidad de los datos observados, que se puede maximizar mediante el uso de software estadístico existente. Inferencia sobre los parámetros de interés puede ser abordado mediante el uso de la matriz de información observada, que también se puede calcular mediante el uso de software estadístico existente. Finalmente, se realiza algunas ilustraciones numéricas de la metodología, utilizando datos simulados y reales.En este trabajo se discute el modelo simple con errores de medición y una extensión multivariada, donde se considera principalmente el modelo estructual, suponiendo que el error de la regresión de respuesta sigue una distribución de dos piezas. Después de confi gurar una fórmula general para distribuciones de dos piezas, nos centramos en el caso donde la densidad base es una distribución normal. Lo interesante de usar como densidad base la distribución normal, es que el desarrollo entrega una mezcla de dos componentes de distribuciones skew-normal multivariada. Esta conexión facilita la construcción de un algoritmo tipo EM para realizar la estimación de máxima verosimilitud. Se obtiene la función de probabilidad de los datos observados, que se puede maximizar mediante el uso de software estadístico existente. Inferencia sobre los parámetros de interés puede ser abordado mediante el uso de la matriz de información observada, que también se puede calcular mediante el uso de software estadístico existente. Finalmente, se realiza algunas ilustraciones numéricas de la metodología, utilizando datos simulados y reales.En este trabajo se discute el modelo simple con errores de medición y una extensión multivariada, donde se considera principalmente el modelo estructual, suponiendo que el error de la regresión de respuesta sigue una distribución de dos piezas. Después de confi gurar una fórmula general para distribuciones de dos piezas, nos centramos en el caso donde la densidad base es una distribución normal. Lo interesante de usar como densidad base la distribución normal, es que el desarrollo entrega una mezcla de dos componentes de distribuciones skew-normal multivariada. Esta conexión facilita la construcción de un algoritmo tipo EM para realizar la estimación de máxima verosimilitud. Se obtiene la función de probabilidad de los datos observados, que se puede maximizar mediante el uso de software estadístico existente. Inferencia sobre los parámetros de interés puede ser abordado mediante el uso de la matriz de información observada, que también se puede calcular mediante el uso de software estadístico existente. Finalmente, se realiza algunas ilustraciones numéricas de la metodología, utilizando datos simulados y reales.En este trabajo se discute el modelo simple con errores de medición y una extensión multivariada, donde se considera principalmente el modelo estructual, suponiendo que el error de la regresión de respuesta sigue una distribución de dos piezas. Después de confi gurar una fórmula general para distribuciones de dos piezas, nos centramos en el caso donde la densidad base es una distribución normal. Lo interesante de usar como densidad base la distribución normal, es que el desarrollo entrega una mezcla de dos componentes de distribuciones skew-normal multivariada. Esta conexión facilita la construcción de un algoritmo tipo EM para realizar la estimación de máxima verosimilitud. Se obtiene la función de probabilidad de los datos observados, que se puede maximizar mediante el uso de software estadístico existente. Inferencia sobre los parámetros de interés puede ser abordado mediante el uso de la matriz de información observada, que también se puede calcular mediante el uso de software estadístico existente. Finalmente, se realiza algunas ilustraciones numéricas de la metodología, utilizando datos simulados y reales.En este trabajo se discute el modelo simple con errores de medición y una extensión multivariada, donde se considera principalmente el modelo estructual, suponiendo que el error de la regresión de respuesta sigue una distribución de dos piezas. Después de confi gurar una fórmula general para distribuciones de dos piezas, nos centramos en el caso donde la densidad base es una distribución normal. Lo interesante de usar como densidad base la distribución normal, es que el desarrollo entrega una mezcla de dos componentes de distribuciones skew-normal multivariada. Esta conexión facilita la construcción de un algoritmo tipo EM para realizar la estimación de máxima verosimilitud. Se obtiene la función de probabilidad de los datos observados, que se puede maximizar mediante el uso de software estadístico existente. Inferencia sobre los parámetros de interés puede ser abordado mediante el uso de la matriz de información observada, que también se puede calcular mediante el uso de software estadístico existente. Finalmente, se realiza algunas ilustraciones numéricas de la metodología, utilizando datos simulados y reales.En este trabajo se discute el modelo simple con errores de medición y una extensión multivariada, donde se considera principalmente el modelo estructual, suponiendo que el error de la regresión de respuesta sigue una distribución de dos piezas. Después de confi gurar una fórmula general para distribuciones de dos piezas, nos centramos en el caso donde la densidad base es una distribución normal. Lo interesante de usar como densidad base la distribución normal, es que el desarrollo entrega una mezcla de dos componentes de distribuciones skew-normal multivariada. Esta conexión facilita la construcción de un algoritmo tipo EM para realizar la estimación de máxima verosimilitud. Se obtiene la función de probabilidad de los datos observados, que se puede maximizar mediante el uso de software estadístico existente. Inferencia sobre los parámetros de interés puede ser abordado mediante el uso de la matriz de información observada, que también se puede calcular mediante el uso de software estadístico existente. Finalmente, se realiza algunas ilustraciones numéricas de la metodología, utilizando datos simulados y reales.En este trabajo se discute el modelo simple con errores de medición y una extensión multivariada, donde se considera principalmente el modelo estructual, suponiendo que el error de la regresión de respuesta sigue una distribución de dos piezas. Después de confi gurar una fórmula general para distribuciones de dos piezas, nos centramos en el caso donde la densidad base es una distribución normal. Lo interesante de usar como densidad base la distribución normal, es que el desarrollo entrega una mezcla de dos componentes de distribuciones skew-normal multivariada. Esta conexión facilita la construcción de un algoritmo tipo EM para realizar la estimación de máxima verosimilitud. Se obtiene la función de probabilidad de los datos observados, que se puede maximizar mediante el uso de software estadístico existente. Inferencia sobre los parámetros de interés puede ser abordado mediante el uso de la matriz de información observada, que también se puede calcular mediante el uso de software estadístico existente. Finalmente, se realiza algunas ilustraciones numéricas de la metodología, utilizando datos simulados y reales.
- ItemOn computing the rank of hyperelliptic curves over Q(T) defined by linear and quadratic polynomials in the T-variable(2024) Seguel Carreño, Tomás Antonio; García Fritz, Natalia Cristina; Pontificia Universidad Católica de Chile. Facultad de Matemáticas
- ItemOn the geography of 3-folds via asymptotic behavior of invariants(2023) Torres Nova, Yerko Alejandro; Urzúa Elia, Giancarlo A.; Pontificia Universidad Católica de Chile. Facultad de MatemáticasRoughly speaking, the problem of geography asks for the existence of varieties of general type after we fix some invariants. In dimension 1, where we fix the genus, the geography question is trivial, but already in dimension 2 it becomes a hard problem in general. In higher dimensions, this problem is essentially wide open. In this paper, we focus on geography in dimension 3. We generalize the techniques which compare the geography of surfaces with the geography of arrangements of curves via asymptotic constructions. In dimension 2 this involves resolutions of cyclic quotient singularities and a certain asymptotic behavior of the associated Dedekind sums and continued fractions. We discuss the general situation with emphasis in dimension 3, analyzing the singularities and various resolutions that show up, and proving results about the asymptotic behavior of the invariants we fix.
- Itemp-adic and archimedean equidistribution of arithmetic cycles(2024) Pérez Piña, Patricio; Menares, Ricardo; Pontificia Universidad Católica de Chile. Facultad de MatemáticasThe purpose of this manuscript is to describe various equidistribution problems related to arithmetic cycles. Depending on the case, the context is p-adic, archimedean or S-arithmetic. The starting point for this research is Duke's equidistribution theorem. Our first result is a p-adic analogue for this theorem in the case of closed modular geodesics. The techniques employed for this are strong enough to obtain other equidistribution results such as: equidistribution of CM points on the p-adic points of a Shimura curve ramified at p; equidistribution of ATR cycles on Hilbert varieties; equidistribution of Stark-Heegner cycles in the mock Hilbert modular surface. The first chapter is an Introduction for our motivations and main results. The next two chapters are devoted to the proof our theorems. There is also an Appendix deepening in the notion of p-adic geodesics.
- ItemProblemas sobre flujos por curvatura extrínseca no lineales(2023) Torres Santaella, José Gabriel; Sáez Trumper, Mariel; Pontificia Universidad Católica de Chile. Facultad de MatemáticasUn flujo geométrico consiste en encontrar soluciones de ecuaciones parabólicas en derivadas parciales que involucran cantidades geométricas de dos o más variedades dadas. En el caso de los flujos geométricos extrínsecos, las soluciones corresponden a una familia de un parámetro de inmersiones cuyas deformaciones dependen de las curvaturas de la hipersuperficie en una variedad riemanniana ambiente. El flujo geométrico extrínseco más estudiado en la literatura es el flujo por la curvatura media (FCM), ya que es el flujo gradiente del funcional de área. En la Introducción de esta tesis presentamos una breve descripción del FCM actuando sobre hipersuperficies en Rn+1. En particular, queremos mencionar el trabajo pionero de Huisken en [Hui2] que demostró que cualquier hipersuperficie cerrada y convexa en Rn+1, en el sentido de que las curvaturas principales son no negativas, se encoge al evolucionar por FCM hasta un punto en tiempo finito. Este fenómeno se suele denominar como desarrollo de una singularidad bajo el FCM, y es una tarea importante entender por qué aparecen singularidades, y cómo tratar con ellas luego de rescalar la hipersuperficie cerca de la singularidad. Por otra parte, es natural preguntarse qué ocurre si consideramos otras funciones de curvatura en lugar de la curvatura media en el contexto de flujos geométricos extrínsecos. En este espíritu, los trabajos de B. Andrews y sus colaboradores en [And2], [And1], [AMZ] y [ALM] desarrollaron una potente teoría, similar a la dada para el FCM, para hipersuperficies estrictamente convexas en Rn+1, donde la función de curvatura es convexa o cóncava. Por función de curvatura entendemos una función homogénea suave y simétrica cuyo dominio es un cono abierto de Rn. En esta tesis nos interesamos en soluciones eternas, soluciones que están definidas para todo tiempo, de flujos por curvatura extrínseca completamente no lineales tal que la evolución está dada por traslaciones en una dirección unitaria fija. Además, nos referimos a estas soluciones por solitones de traslación de la función de curvatura que estemos estudiando.Los solitones de traslación pueden verse como hipersuperficies en Rn+1 que satisfacen una ecuación diferencial parcial de la forma () = h⌫, vi, donde () es la función de curvatura evaluada en las curvaturas principales de la hipersuperficie, ⌫ es el vector normal unitario que apunta hacia afuera de la hipersuperficie (mirar Remark 5.0.1), y v 2 Sn (normalmente v = en+1) es la dirección de la traslación del flujo. Es importante destacar que esta ecuación es localmente uniforme elíptica cuando las curvaturas principales pertenecen al cono := ⇢ 2 Rn : () > 0, @ @i > 0. Esto nos permite estudiar los trasladores como en el contexto de la geometría diferencial clásica. Por otro lado, cuando la función de curvatura es la curvatura media, los trasladores son un modelo para las singularidades de tipo II del FCM. Esto significa que el supremo de la norma de la segunda forma fundamental estalla en una tasa mayor que O ✓ 1 pT t ◆, donde T es el tiempo máximo de existencia del flujo, y luego de escalar la hipersuperficie de manera adecuada, la evolución de la hipersuperficie converge a un H-traslador del espacio ambiente. Además, los trasladores del FCM son hipersuperficies mínimas en (Rn+1, ehx,vi dx2). Este es un hecho notable para el estudio de estas soluciones ya que la teoría local de hipersuperficies mínimas se puede aplicar para construirlas y caracterizarlas. Desgraciadamente, cuando la función de curvatura no es lineal, sólo se sabe que las singularidades de tipo II pueden modelarse mediante trasladores si además la función de curvatura es convexa como función definida en su dominio. Además, no tenemos esperanzas de que estas hipersuperficies sean mínimas en un espacio euclidiano conforme como en el caso de la curvatura media. Por ello, el estudio de los trasladores para funciones de curvatura no lineales es más complicado, y necesita que se desarrollen otro tipos de técnicas para el desarrollo de esta teoría. Los resultados de esta tesis están en el espíritu de explotar el hecho de que la ecuación () = h⌫, vi es localmente. Uniformemente elíptica cuando 2 . En particular, pudimos desarrollar propiedades geométricas para los trasladores contenidas en el capítulo 5. Una de las propiedades geométricas que obtuvimos fue un principio de tangencia, y como corolarios, también obtuvimos un resultado de no existencia, y un teorema de unicidad cuando el solitón de traslación es un grafo estrictamente convexo definido sobre una bola (mirar Teorema 5.0.5). Este último resultado se obtuvo mediante el método de los planos móviles de Alexandrov aplicado para esta ecuación. Por otra parte, el resultado principal de esta tesis es una estimación de convexidad en el espíritu de [SS], donde los autores mostraron que un H-traslador 2-convexo con H > 0 en Rn con n 3, es convexo. Hasta donde sabemos, sigue siendo un problema abierto si un -traslador que es un gráfico en Rn+1 tal que 2 y : ! R es una función de curvatura cóncava es convexo o no. Afortunadamente, bajo las hipótesis del Teorema de estimación de convexidad 2.2.12, pudimos demostrar que para una función de curvatura estrictamente concava, los -solitones de traslación que son uniformente 2-convexos cuyas curvaturas principales satisfacen ↵H ( + 1) para constantes ↵ y positivas, se tiene que el mínimo de las curvaturas principales es asintóticamente cero al infintio del soliton de traslación. Además, para la familia de las funciones de curvatura Qk = Sk+1 Sk, donde Sk denota el polinomio simétrico elemental de grado k en n-variables, mostramos en el Capítulo 3 estimaciones de gradiente y de segundo orden en el espíritu del trabajo de Ecker y Huisken en [EH1]. La principal contribución de este capítulo es un resultado de tipo Liouville Teorema 3.0.3 para Qk-trasladores que son planos en el infinito. Finalmente, también construimos trasladores rotacionalmente simétricos para la función de curvatura pn Sn y Qn1 en Rn+1. Estas soluciones son de tipo “bowl” ya que son gráficos estrictamente convexos definidos en una bola o en todo Rn. Merece la pena mencionar un trabajo reciente de [Ren], en el que el autor construye soluciones de tipo “bowl” para una clase general de funciones de curvatura que son ↵-homogéneas con ↵ 1. 2 . Además, caracterizó cuándo la solución de tipo “bowl” estará definida en una bola o en todo el hiperplano en términos de la función de curvatura.
- ItemProblems on conformal invariance and Yamabe-Type flows(2024) Espinal Florez, María Fernanda; Sáez Trumper, Mariel; Pontificia Universidad Católica de Chile. Facultad de MatemáticasThis work is specifically focused on the study of quantities in Riemannian geometry under a conformal change of metric, that is, under changes of metric which stretch the length of vectors but preserve the angle between any pair of vectors. In this context, my thesis work has centered on the study of symmetric polynomials σk of the eigenvalues of the Schouten tensor, which satisfy a tranformation law under conformal changes. This work consists of two parts. The rst problem concentrates on Yamabe-type ows for σk-curvature, which are classic examples of intrinsic non-linear geometric ows. Inspired by work of Daskalopoulos and Sesum [22], we investigate the existence and classi cation of conformally at rotationally symmetric k-Yamabe gradient solitons replacing scalar curvature by σk-curvature. Our rst result reduces the classi cation of k-Yamabe solitons to the classi cation of global smooth solutions of a fully nonlinear elliptic equation. Regarding the existence result, through a phase-plane analysis of an autonomous system of ordinary equations as in [71], we were able to prove local existence of the ow under conditions of admissibility for the initial metric when n ≥ 2k. Additionally, we had to analyze the asymptotic behavior and solution pro le in each case, taking into account, especially the admissibility of the solution. In contrast with the classical case, the fully non-linear nature of the problem requires additional restrictions (to ensure admissibility) and a more delicate analysis. On the other hand, in collaboration with Professor M. González [27] we work on the k-Yamabe singular problem. The research was focused on constructing metrics with constant σ2-curvature and non-isolated singularities. Speci cally, we contructed a complete non-compact Riemannian metrics with positive constant σ2-curvature on the sphere Sn with a prescribed singular set Λ given by a disjoint union of closed submanifolds whose dimension is positive and strictly less than n−√n−2 2 . This is a fully non-linear problem, nevertheless, we show that the classical gluing method (used by Mazzeo-Pacard for the scalar curvature [56]) still works in this setting since the linearized operator has good mapping properties in weighted spaces. The idea to construct this metric is to nd rst an approximate metric with the right asymptotic behavior near the singularity. Even though many of our arguments would work for a general k, we have some computational di culties that restrict our theorem to k = 2.
- ItemSome advances in a conjecture of Watkins and an analogue over function fields(2023) Caro Reyes, Jerson; Pastén Vásquez, Héctor; Pontificia Universidad Católica de Chile. Facultad de MatemáticasOur results are divided into two main parts, both related to a conjecture by Watkins. In 2002, Watkins conjectured that the rank of an elliptic curve defined over Q is at most the 2-adic valuation of its modular degree. The first part is related to presenting some approaches to Watkins’s conjecture in its original version. We prove this conjecture for semistable elliptic curves having exactly one rational point of order 2, provided that they have an odd number of primes of non-split multiplicative reduction or no primes of split multiplicative reduction. In addition, we show that this conjecture is satisfied when E is any quadratic twist of an elliptic curve with non-trivial rational 2-torsion and prime power conductor, in particular, for the congruent number elliptic curves. In the second part, we consider the analogous problem over function fields of positive characteristic, and we prove it in several cases. More precisely, every modular semistable elliptic curve over Fq(T) after extending constant scalars and every quadratic twist of a modular elliptic curve over Fq(T) by a polynomial with sufficiently many prime factors satisfy this version of Watkins’s conjecture. Additionally, we prove the analogue of Watkins’s conjecture for a well-known family of elliptic curves with unbounded rank due to Ulmer. In addition, we include a final appendix describing joint work with Hector Pasten [16] on a generalization of the Chabauty-Coleman bound for surfaces. While this is not directly related to the core of the thesis, it is a report on work that was performed during my time as a Ph.D. student.