• La Universidad
    • Historia
    • Rectoría
    • Autoridades
    • Secretaría General
    • Pastoral UC
    • Organización
    • Hechos y cifras
    • Noticias UC
  • 2011-03-15-13-28-09
  • Facultades
    • Agronomía e Ingeniería Forestal
    • Arquitectura, Diseño y Estudios Urbanos
    • Artes
    • Ciencias Biológicas
    • Ciencias Económicas y Administrativas
    • Ciencias Sociales
    • College
    • Comunicaciones
    • Derecho
    • Educación
    • Filosofía
    • Física
    • Historia, Geografía y Ciencia Política
    • Ingeniería
    • Letras
    • Matemáticas
    • Medicina
    • Química
    • Teología
    • Sede regional Villarrica
  • 2011-03-15-13-28-09
  • Organizaciones vinculadas
  • 2011-03-15-13-28-09
  • Bibliotecas
  • 2011-03-15-13-28-09
  • Mi Portal UC
  • 2011-03-15-13-28-09
  • Correo UC
- Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log in
    Log in
    Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of DSpace
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log in
    Log in
    Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Valenzuela, Loreto"

Now showing 1 - 9 of 9
Results Per Page
Sort Options
  • No Thumbnail Available
    Item
    An in-depth system-level assessment of green hydrogen production by coupling solid oxide electrolysis and solar thermal systems
    (2025) Arias, Ignacio; Castillejo Cuberos, Armando; Battisti, Felipe G.; Romero Ramos, J.A.; Pérez, Manuel; González Portillo, L.F.; Valenzuela, Loreto; Cardemil Iglesias, José Miguel; Escobar, Rodrigo
    This study presents a comprehensive techno-economic analysis of green hydrogen production utilizing a third-generation Concentrated Solar Power system integrated with Solid Oxide Electrolysis Cells, examining system configurations under variable climatic conditions in Chile and Spain. By employing dynamic simulation models that consider hourly and sub-hourly datasets, the research assesses the impact of solar irradiance variability on hydrogen production efficiency. The integration approach explores the efficacy of utilizing high-temperature solar power-derived heat for enhanced electrolysis operation, highlighting the critical influence of solar resource quality and data temporal resolution in system performance. Several scenarios involving different solar multiples, thermal energy storage capacities, and electrolyzer sizes were analyzed to identify their effects on the Levelized Cost of Hydrogen. The economic analysis reveals that this cost is notably sensitive to operational parameters and system configurations, suggesting that optimal integration and scaling of solar power and electrolysis technologies could significantly reduce hydrogen production costs. The findings underscore the need for targeted energy policies and investments in renewable technologies to support cost-effective hydrogen production, promoting future research focusing on advanced materials for electrolysis cells and improved system integration strategies. This work enhances the understanding of integrating advanced solar thermal and electrolysis technologies, providing a robust framework for advancing global sustainable energy solutions.
  • Loading...
    Thumbnail Image
    Item
    Assessing system-level synergies between photovoltaic and proton exchange membrane electrolyzers for solar-powered hydrogen production
    (2024) Arias Olivares, Ignacio Javier; G. Battisti, Felipe; Romero Ramos, J. A.; Pérez, Manuel; Valenzuela, Loreto; Cardemil Iglesias, José Miguel; Escobar Moragas, Rodrigo Alfonso
    This study delves into the techno-economic benefits of integrating Proton Exchange Membrane electrolyzers with photovoltaic systems for hydrogen production, with a keen focus on cost optimization strategies. A comprehensive analysis of several system scales and cost scenarios unveils the critical roles of Proton Exchange Membrane stack systems and the Balance of Plant components in influencing capital expenditures. Notably, the research identifies that incorporating the grid via a complementary Power Purchase Agreement, alongside clipped solar energy, innovatively redistributes cost elements. This approach significantly reduces the levelized cost of hydrogen, thereby enabling the feasibility of hydrogen production in regions characterized by low solar radiation at the cost of high grid electricity penetration. Sensitivity to energy costs, accentuated by different integration schemes, highlights the pivotal role of the stack cost and the Balance of Plant cost reductions in achieving economic viability for large-scale deployments. The study underscores the necessity of holistic cost optimization, revealing that strategic grid support coupled with solar energy enhances the techno-economic performance and broadens the scope for renewable hydrogen production in less favorable locales. These insights offer invaluable guidance to stakeholders, advocating for advanced integration strategies that promise both efficiency and financial sustainability in the burgeoning field of renewable hydrogen production systems.
  • No Thumbnail Available
    Item
    Composición de película o recubrimiento líquido comestible aplicable a la superficie de pescados o mariscos frescos comprendiendo quitosano, gelatina y agentes activos (Chile, concesión n° 68599)
    Valenzuela, Loreto; Cuevas Valenzuela, José Oscar; Franco Melazzini, Wendy Verónica; Pérez Correa, José Ricardo
  • Loading...
    Thumbnail Image
    Item
    Green Hydrogen Cogeneration Through Solid-Particle Concentrated Solar Power System Integrated With Proton Exchange Membrane Stacks
    (2025) Arias Olivares, Ignacio Javier; Gesser Battisti, Felipe; Cardemil, José M.; Valenzuela, Loreto; Escobar, Rodrigo
    This paper presents a techno-economic analysis of third-generation (Gen3) Concentrated Solar Power (CSP) systems using solid particles and Proton Exchange Membrane (PEM) stacks for green hydrogen production. The study assesses the Levelized Cost of Hydrogen (LCOH2) as a key metric. A 100 MWe CSP plant can achieve a LCOE of 55-60 $/MWh, with a Solar Multiple (SM) of 3 and Thermal Energy Storage (TES) capacity between 7 h and 16 h. Results show that a 1:1 ratio between PEM and CSP capacities is not needed to optimize hydrogen production, enabling hybrid schemes for electricity and hydrogen co-generation. However, the achieved LCOH2 does not meet IEA’s 2030 target of below 4 $/kg-H2. Key challenges include reducing PEM costs for large-scale applications and ensuring a cost of electricity below 55 $/MWh. Addressing these issues will be crucial for the economic viability of Gen3 CSP+PEM systems in the transition to sustainable hydrogen production.
  • No Thumbnail Available
    Item
    Modeling and Hourly Time-Scale Characterization of the Main Energy Parameters of Parabolic-Trough Solar Thermal Power Plants Using a Simplified Quasi-Dynamic Model
    (2021) Arias, Ignacio; Zarza, Eduardo; Valenzuela, Loreto; Perez-Garcia, Manuel; Romero Ramos, Jose Alfonso; Escobar, Rodrigo
    A simplified mathematical model of parabolic-trough solar thermal power plants, which allow one to carry out an energetic characterization of the main thermal parameters that influence the solar field performance, was evaluated through a comparison of simulation results. Two geographical locations were selected to evaluate the mathematical model proposed in this work-one in each hemisphere-and design considerations according with the practical/operational experience were taken. Furthermore, independent simulations were performed using the System Advisor Model (SAM) software, their results were compared with those obtained by the simplified model. According with the above, the mathematical model allows one to carry out simulations with a high degree of flexibility and adaptability, in which the equations that allow the plant to be energetically characterized are composed of a series of logical conditions that help identify boundary conditions between dawn and sunset, direct normal irradiance transients, and when the thermal energy storage system must compensate the solar field energy deficits to maintain the full load operation of the plant. Due to the above, the developed model allows one to obtain satisfactory simulation results; referring to the net electric power production, this model provides results in both hemispheres with a relative percentage error in the range of [0.28-8.38%] compared with the results obtained with the SAM, with mean square values of 4.57% and 4.21% for sites 1 and 2, respectively.
  • Loading...
    Thumbnail Image
    Item
    Modeling of a small parabolic trough plant based in direct steam generation for cogeneration in the Chilean industrial sector
    (2018) Valenzuela, Carlos; Felbol, Carlos; Quiñones, Gonzalo; Valenzuela, Loreto; Moya, Sara L.; Escobar Moragas, Rodrigo
  • Loading...
    Thumbnail Image
    Item
    Teatro y sociedad chilena en la mitad del siglo XX : el melodrama
    (1983) Hurtado, María de la Luz; Valenzuela, Loreto
  • Loading...
    Thumbnail Image
    Item
    Teatro y sociedad chilena en la mitad del siglo XX : el sainete
    (1984) Hurtado, María de la Luz; Valenzuela, Loreto
  • No Thumbnail Available
    Item
    Teatro y sociedad chilena en la mitad del siglo XX: El vaudeville y la comedia de enredos matrimoniales
    (1984) Hurtado, María de la Luz; Valenzuela, Loreto

Bibliotecas - Pontificia Universidad Católica de Chile- Dirección oficinas centrales: Av. Vicuña Mackenna 4860. Santiago de Chile.

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback