• La Universidad
    • Historia
    • Rectoría
    • Autoridades
    • Secretaría General
    • Pastoral UC
    • Organización
    • Hechos y cifras
    • Noticias UC
  • 2011-03-15-13-28-09
  • Facultades
    • Agronomía e Ingeniería Forestal
    • Arquitectura, Diseño y Estudios Urbanos
    • Artes
    • Ciencias Biológicas
    • Ciencias Económicas y Administrativas
    • Ciencias Sociales
    • College
    • Comunicaciones
    • Derecho
    • Educación
    • Filosofía
    • Física
    • Historia, Geografía y Ciencia Política
    • Ingeniería
    • Letras
    • Matemáticas
    • Medicina
    • Química
    • Teología
    • Sede regional Villarrica
  • 2011-03-15-13-28-09
  • Organizaciones vinculadas
  • 2011-03-15-13-28-09
  • Bibliotecas
  • 2011-03-15-13-28-09
  • Mi Portal UC
  • 2011-03-15-13-28-09
  • Correo UC
- Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log in
    Log in
    Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of DSpace
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log in
    Log in
    Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Davila, Juan"

Now showing 1 - 5 of 5
Results Per Page
Sort Options
  • No Thumbnail Available
    Item
    Bistable Boundary Reactions in Two Dimensions
    (2011) Davila, Juan; del Pino, Manuel; Musso, Monica
    In a bounded domain Omega subset of R(2) with smooth boundary we consider the problem Delta U =0 in Omega, du/dv = i/epsilon f(u) on d Omega
  • No Thumbnail Available
    Item
    Fast and slow decay solutions for supercritical elliptic problems in exterior domains
    (2008) Davila, Juan; del Pino, Manuel; Musso, Monica; Wei, Juncheng
    We consider the elliptic problem Delta u + u(p) = 0, u > 0 in an exterior domain, Omega = R(N)\D under zero Dirichlet and vanishing conditions, where D is smooth and bounded in R(N), N >= 3, and p is supercritical, namely p > N+2/N-2. We prove that this problem has infinitely many solutions with slow decay O(vertical bar x vertical bar(-2/p-1)) at infinity. In addition, a solution with fast decay O(vertical bar x vertical bar(2- N)) exists if p is close enough from above to the critical exponent.
  • No Thumbnail Available
    Item
    Singular limits of a two-dimensional boundary value problem arising in corrosion modelling
    (2006) Davila, Juan; Del Pino, Manuel; Musso, Monica; Wei, Juncheng
    We consider the boundary value problem
  • Loading...
    Thumbnail Image
    Item
    Standing waves for supercritical nonlinear Schrodinger equations
    (ACADEMIC PRESS INC ELSEVIER SCIENCE, 2007) Davila, Juan; del Pino, Manuel; Musso, Monica; Wei, Juncheng
    Let V (x) be a non-negative, bounded potential in R-N, N >= 3 and p supercritical, p > N+2/N-2. We look for positive solutions of the standing-wave nonlinear Schrodinger equation Delta u - V(x)u + u(P) = 0 in R-N, with u(x) -> 0 as vertical bar x vertical bar -> +infinity. We prove that if V(x) = 0(vertical bar x vertical bar(-2)) as vertical bar x vertical bar -> +infinity, then for N >= 4 and p > N+1/N-3 this problem admits a continuum of solutions. If in addition we have, for instance, V (x) = 0 (vertical bar x vertical bar-mu) with mu > N, then this result still holds provided that N >= 3 and p > N+2/N-2. Other conditions for solvability, involving behavior of V at infinity, are also provided. (C) 2007 Elsevier Inc. All rights reserved.
  • Loading...
    Thumbnail Image
    Item
    The supercritical Lane-Emden-Fowler equation in exterior domains
    (TAYLOR & FRANCIS INC, 2007) Davila, Juan; del Pino, Manuel; Muss, Monica
    We consider the exterior problem

Bibliotecas - Pontificia Universidad Católica de Chile- Dirección oficinas centrales: Av. Vicuña Mackenna 4860. Santiago de Chile.

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback