Browsing by Author "Bauer, Franz E. "
Now showing 1 - 20 of 46
Results Per Page
Sort Options
- ItemA Transient "Changing-look" Active Galactic Nucleus Resolved on Month Timescales from First-year Sloan Digital Sky Survey V Data(2022) Zeltyn, Grisha; Trakhtenbrot, Benny; Eracleous, Michael; Runnoe, Jessie; Trump, Jonathan R.; Stern, Jonathan; Shen, Yue; Hernandez-Garcia, Lorena; Bauer, Franz E.; Yang, Qian; Dwelly, Tom; Ricci, Claudio; Green, Paul; Anderson, Scott F.; Assef, Roberto J.; Guolo, Muryel; MacLeod, Chelsea; Davis, Megan C.; Fries, Logan; Gezari, Suvi; Grogin, Norman A.; Homan, David; Koekemoer, Anton M.; Krumpe, Mirko; LaMassa, Stephanie; Liu, Xin; Merloni, Andrea; Martinez-Aldama, Mary Loli; Schneider, Donald P.; Temple, Matthew J.; Brownstein, Joel R.; Ibarra-Medel, Hector; Burke, Jamison; Pellegrino, Craig; Kollmeier, Juna A.We report the discovery of a new "changing-look" active galactic nucleus (CLAGN) event, in the quasar SDSS J162829.17+432948.5 at z = 0.2603, identified through repeat spectroscopy from the fifth Sloan Digital Sky Survey (SDSS-V). Optical photometry taken during 2020-2021 shows a dramatic dimming of Delta g approximate to 1 mag, followed by a rapid recovery on a timescale of several months, with the less than or similar to 2 month period of rebrightening captured in new SDSS-V and Las Cumbres Observatory spectroscopy. This is one of the fastest CLAGN transitions observed to date. Archival observations suggest that the object experienced a much more gradual dimming over the period of 2011-2013. Our spectroscopy shows that the photometric changes were accompanied by dramatic variations in the quasar-like continuum and broad-line emission. The excellent agreement between the pre- and postdip photometric and spectroscopic appearances of the source, as well as the fact that the dimmest spectra can be reproduced by applying a single extinction law to the brighter spectral states, favor a variable line-of-sight obscuration as the driver of the observed transitions. Such an interpretation faces several theoretical challenges, and thus an alternative accretion-driven scenario cannot be excluded. The recent events observed in this quasar highlight the importance of spectroscopic monitoring of large active galactic nucleus samples on weeks-to-months timescales, which the SDSS-V is designed to achieve.
- ItemA variable active galactic nucleus at z=2.06 triply-imaged by the galaxy cluster MACS J0035.4-2015(2023) Furtak, Lukas J.; Mainali, Ramesh; Zitrin, Adi; Plat, Adele; Fujimoto, Seiji; Donahue, Megan; Nelson, Erica J.; Bauer, Franz E.; Uematsu, Ryosuke; Caminha, Gabriel B.; Andrade-Santos, Felipe; Bradley, Larry D.; Caputi, Karina, I; Charlot, Stephane; Chevallard, Jacopo; Coe, Dan; Curtis-Lake, Emma; Espada, Daniel; Frye, Brenda L.; Knudsen, Kirsten K.; Koekemoer, Anton M.; Kohno, Kotaro; Kokorev, Vasily; Laporte, Nicolas; Lee, Minju M.; Lemaux, Brian C.; Magdis, Georgios E.; Sharon, Keren; Stark, Daniel P.; Su, Yuanyuan; Suess, Katherine A.; Ueda, Yoshihiro; Umehata, Hideki; Vidal-Garcia, Alba; Wu, John F.We report the discovery of a triply imaged active galactic nucleus (AGN), lensed by the galaxy cluster MACS J0035.4-2015 (z(d) = 0.352). The object is detected in Hubble Space Telescope imaging taken for the RELICS program. It appears to have a quasi-stellar nucleus consistent with a point-source, with a de-magnified radius of r(e) less than or similar to 100 pc. The object is spectroscopically confirmed to be an AGN at z spec = 2.063 +/- 0.005 showing broad rest-frame UV emission lines, and detected in both X-ray observations with Chandra and in ALCS ALMA band 6 (1.2 mm) imaging. It has a relatively faint rest-frame UV luminosity for a quasar-like object, M (UV, 1450) = -19.7 +/- 0.2. The object adds to just a few quasars or other X-ray sources known to be multiply lensed by a galaxy cluster. Some diffuse emission from the host galaxy is faintly seen around the nucleus, and there is a faint object nearby sharing the same multiple-imaging symmetry and geometric redshift, possibly an interacting galaxy or a star-forming knot in the host. We present an accompanying lens model, calculate the magnifications and time delays, and infer the physical properties of the source. We find the rest-frame UV continuum and emission lines to be dominated by the AGN, and the optical emission to be dominated by the host galaxy of modest stellar mass M-* similar or equal to 10(9.2) M-circle dot. We also observe some variation in the AGN emission with time, which may suggest that the AGN used to be more active. This object adds a low-redshift counterpart to several relatively faint AGN recently uncovered at high redshifts with HST and JWST.
- ItemALMA Lensing Cluster Survey: A spectral stacking analysis of [C II] in lensed z ∼ 6 galaxies(2021) Jolly, Jean-Baptiste; Knudsen, Kirsten; Laporte, Nicolas; Richard, Johan; Fujimoto, Seiji; Kohno, Kotaro; Ao, Yiping; Bauer, Franz E.; Egami, Eiichi; Espada, Daniel; Dessauges-Zavadsky, Miroslava; Magdis, Georgios; Schaerer, Daniel; Sun, Fengwu; Valentino, Francesco; Wang, Wei-Hao; Zitrin, AdiContext. The properties of galaxies at redshift z>6 hold the key to our understanding of the early stages of galaxy evolution and can potentially identify the sources of the ultraviolet radiation that give rise to the epoch of reionisation. The far-infrared cooling line of [C II] at 158 mu m is known to be bright and correlate with the star formation rate (SFR) of low-redshift galaxies, and hence is also suggested to be an important tracer of star formation and interstellar medium properties for very high-redshift galaxies.
- ItemALMA Lensing Cluster Survey: ALMA-Herschel Joint Study of Lensed Dusty Star-forming Galaxies across z ≃ 0.5-6(2022) Sun, Fengwu; Egami, Eiichi; Fujimoto, Seiji; Rawle, Timothy; Bauer, Franz E.; Kohno, Kotaro; Smail, Ian; Perez-Gonzalez, Pablo G.; Ao, Yiping; Chapman, Scott C.; Combes, Francoise; Dessauges-Zavadsky, Miroslava; Espada, Daniel; Gonzalez-Lopez, Jorge; Koekemoer, Anton M.; Kokorev, Vasily; Lee, Minju M.; Morokuma-Matsui, Kana; Munoz Arancibia, Alejandra M.; Oguri, Masamune; Pello, Roser; Ueda, Yoshihiro; Uematsu, Ryosuke; Valentino, Francesco; van der Werf, Paul; Walth, Gregory L.; Zemcov, Michael; Zitrin, AdiWe present an ALMA-Herschel joint analysis of sources detected by the ALMA Lensing Cluster Survey (ALCS) at 1.15 mm. Herschel/PACS and SPIRE data at 100-500 mu m are deblended for 180 ALMA sources in 33 lensing cluster fields that are detected either securely (141 sources; in our main sample) or tentatively at S/N >= 4 with cross-matched HST/Spitzer counterparts, down to a delensed 1.15 mm flux density of similar to 0.02 mJy. We performed far-infrared spectral energy distribution modeling and derived the physical properties of dusty star formation for 125 sources (109 independently) that are detected at >2 sigma in at least one Herschel band. A total of 27 secure ALCS sources are not detected in any Herschel bands, including 17 optical/near-IR-dark sources that likely reside at z = 4.2 +/- 1.2. The 16th, 50th, and 84th percentiles of the redshift distribution are 1.15, 2.08, and 3.59, respectively, for ALCS sources in the main sample, suggesting an increasing fraction of z similar or equal to 1 - 2 galaxies among fainter millimeter sources (f(1150) similar to 0.1 mJy). With a median lensing magnification factor of mu = 2.6(-0.8)(+2.6), ALCS sources in the main sample exhibit a median intrinsic star formation rate of 94(-54)(+84) M-circle dot yr(-1), lower than that of conventional submillimeter galaxies at similar redshifts by a factor of similar to 3. Our study suggests weak or no redshift evolution of dust temperature with L-IR < 10(12) L-circle dot galaxies within our sample at z similar or equal to 0 - 2. At L-IR > 10(12) L-circle dot, the dust temperatures show no evolution across z similar or equal to 1-4 while being lower than those in the local universe. For the highest-redshift source in our sample (z = 6.07), we can rule out an extreme dust temperature (>80 K) that was reported for MACS0416 Y1 at z = 8.31.
- ItemALMA Lensing Cluster Survey: average dust, gas, and star-formation properties of cluster and field galaxies from stacking analysis(2023) Guerrero, Andrea; Nagar, Neil; Kohno, Kotaro; Fujimoto, Seiji; Kokorev, Vasily; Brammer, Gabriel; Jolly, Jean-Baptiste; Knudsen, Kirsten; Sun, Fengwu; Bauer, Franz E.; Caminha, Gabriel B.; Caputi, Karina; Neumann, Gerald; Orellana-Gonzalez, Gustavo; Cerulo, Pierluigi; Gonzalez-Lopez, Jorge; Laporte, Nicolas; Koekemoer, Anton M.; Ao, Yiping; Espada, Daniel; Arancibia, Alejandra M. MunozWe develop new tools for continuum and spectral stacking of Atacama Large Millimeter/submillimeter Array (ALMA) data, and apply these to the ALMA Lensing Cluster Survey. We derive average dust masses, gas masses, and star-formation rates (SFRs) from the stacked observed 260-GHz continuum of 3402 individually undetected star-forming galaxies, of which 1450 are cluster galaxies and 1952 field galaxies, over three redshift and stellar mass bins (over z = 0-1.6 and log M-*[M-circle dot] = 8-11.7), and derive the average molecular gas content by stacking the emission line spectra in a SFR-selected subsample. The average SFRs and specific SFRs of both cluster and field galaxies are lower than those expected for main-sequence (MS) star-forming galaxies, and only galaxies with stellar mass of log M-*[M-circle dot] = 9.35-10.6 show dust and gas fractions comparable with those in the MS. The ALMA-traced average 'highly obscured' SFRs are typically lower than the SFRs observed from optical to near-infrared spectral analysis. Cluster and field galaxies show similar trends in their contents of dust and gas, even when field galaxies were brighter in the stacked maps. From spectral stacking we find a potential CO (J = 4 -> 3) line emission (signal-to-noise ratio being similar to 4) when stacking cluster and field galaxies with the highest SFRs.
- ItemALMA Lensing Cluster Survey: Bright [C ii] 158 μm Lines from a Multiply Imaged Sub-L* Galaxy at z=6.0719(2021) Fujimoto, Seiji; Oguri, Masamune; Brammer, Gabriel; Yoshimura, Yuki; Laporte, Nicolas; Gonzalez-Lopez, Jorge; Caminha, Gabriel B.; Kohno, Kotaro; Zitrin, Adi; Richard, Johan; Ouchi, Masami; Bauer, Franz E.; Smail, Ian; Hatsukade, Bunyo; Ono, Yoshiaki; Kokorev, Vasily; Umehata, Hideki; Schaerer, Daniel; Knudsen, Kirsten; Sun, Fengwu; Magdis, Georgios; Valentino, Francesco; Ao, Yiping; Toft, Sune; Dessauges-Zavadsky, Miroslava; Shimasaku, Kazuhiro; Caputi, Karina; Kusakabe, Haruka; Morokuma-Matsui, Kana; Shotaro, Kikuchihara; Egami, Eiichi; Lee, Minju M.; Rawle, Timothy; Espada, DanielWe present bright [C ii] 158 mu m line detections from a strongly magnified and multiply imaged (mu similar to 20-160) sub-L* (MUV=-19.75-0.44+0.55) Lyman-break galaxy (LBG) at z = 6.0719 +/- 0.0004, drawn from the ALMA Lensing Cluster Survey (ALCS). Emission lines are identified at 268.7 GHz at >= 8 sigma exactly at the positions of two multiple images of the LBG, behind the massive galaxy cluster RXCJ0600-2007. Our lens models, updated with the latest spectroscopy from VLT/MUSE, indicate that a sub region of the LBG crosses the caustic, and is lensed into a long (similar to 6 '') arc with a local magnification of mu similar to 160, for which the [C ii] line is also significantly detected. The source plane reconstruction resolves the interstellar medium (ISM) structure, showing that the [C ii] line is co-spatial with the rest-frame UV continuum at a scale of similar to 300 pc. The [C ii] line properties suggest that the LBG is a rotation-dominated system, whose velocity gradient explains a slight difference in redshifts between the whole LBG and its sub-region. The star formation rate (SFR)-L-[CII] relations, for whole and sub-regions of the LBG, are consistent with those of local galaxies. We evaluate the lower limit of the faint-end of the [C ii] luminosity function at z = 6, finding it to be consistent with predictions from semi-analytical models and from the local SFR-L-[CII] relation with a SFR function at z = 6. These results imply that the local SFR-L-[CII] relation is universal for a wide range of scales, including the spatially resolved ISM, the whole region of the galaxy, and the cosmic scale, even in the epoch of reionization.
- ItemBASS XXXI: Outflow scaling relations in low redshift X-ray AGN host galaxies with MUSE(2022) Kakkad, D.; Sani, E.; Rojas, A. F.; Mallmann, Nicolas D.; Veilleux, S.; Bauer, Franz E.; Ricci, F.; Mushotzky, R.; Koss, M.; Ricci, C.; Treister, E.; Privon, George C.; Nguyen, N.; Bär, R.; Harrison, F.; Oh, K.; Powell, M.; Riffel, R.; Stern, D.; Trakhtenbrot, B.; Urry, C. M.Ionized gas kinematics provide crucial evidence of the impact that active galactic nuclei (AGNs) have in regulating star formation in their host galaxies. Although the presence of outflows in AGN host galaxies has been firmly established, the calculation of outflow properties such as mass outflow rates and kinetic energy remains challenging. We present the [O iii]lambda 5007 ionized gas outflow properties of 22 z<0.1 X-ray AGN, derived from the BAT AGN Spectroscopic Survey using MUSE/VLT. With an average spatial resolution of 1 arcsec (0.1-1.2 kpc), the observations resolve the ionized gas clouds down to sub-kiloparsec scales. Resolved maps show that the [O iii] velocity dispersion is, on average, higher in regions ionized by the AGN, compared to star formation. We calculate the instantaneous outflow rates in individual MUSE spaxels by constructing resolved mass outflow rate maps, incorporating variable outflow density and velocity. We compare the instantaneous values with time-averaged outflow rates by placing mock fibres and slits on the MUSE field-of-view, a method often used in the literature. The instantaneous outflow rates (0.2-275 M-circle dot yr(-1)) tend to be two orders of magnitude higher than the time-averaged outflow rates (0.001-40 M-circle dot yr(-1)). The outflow rates correlate with the AGN bolometric luminosity (L-bol similar to 10(42.71)-10(45.62) erg s(-1)) but we find no correlations with black hole mass (10(6.1)-10(8.9) M-circle dot), Eddington ratio (0.002-1.1), and radio luminosity (10(21)-10(26) W Hz(-1)). We find the median coupling between the kinetic energy and L-bol to be 1 per cent, consistent with the theoretical predictions for an AGN-driven outflow.
- ItemBASS XXXII: Studying the Nuclear Millimeter-wave Continuum Emission of AGNs with ALMA at Scales ≲100-200 pc(2022) Kawamuro, Taiki; Ricci, Claudio; Imanishi, Masatoshi; Mushotzky, Richard F.; Izumi, Takuma; Ricci, Federica; Bauer, Franz E.; Koss, Michael J.; Trakhtenbrot, Benny; Ichikawa, Kohei; Rojas, Alejandra F.; Smith, Krista Lynne; Shimizu, Taro; Oh, Kyuseok; den Brok, Jakob S.; Baba, Shunsuke; Balokovic, Mislay; Chang, Chin-Shin; Kakkad, Darshan; Pfeifle, Ryan W.; Privon, George C.; Temple, Matthew J.; Ueda, Yoshihiro; Harrison, Fiona; Powell, Meredith C.; Stern, Daniel; Urry, Meg; Sanders, David B.To understand the origin of nuclear (less than or similar to 100 pc) millimeter-wave (mm-wave) continuum emission in active galactic nuclei (AGNs), we systematically analyzed subarcsecond resolution Band-6 (211-275 GHz) Atacama Large Millimeter/submillimeter Array data of 98 nearby AGNs (z < 0.05) from the 70 month Swift/BAT catalog. The sample, almost unbiased for obscured systems, provides the largest number of AGNs to date with high mm-wave spatial resolution sampling (similar to 1-200 pc), and spans broad ranges of 14-150 keV luminosity {40< log [L-14(-150)/(erg s(-1))] < 45}, black hole mass [5 < log(M-BH/M-circle dot) < 10], and Eddington ratio (-4 < log lambda(Edd) < 2). We find a significant correlation between 1.3 mm (230 GHz) and 14-150 keV luminosities. Its scatter is approximate to 0.36 dex, and the mm-wave emission may serve as a good proxy of the AGN luminosity, free of dust extinction up to N-H similar to 10(26) CM-2. While the mm-wave emission could be self-absorbed synchrotron radiation around the X-ray corona according to past works, we also discuss different possible origins of the mm-wave emission: AGN-related dust emission, outflow-driven shocks, and a small-scale (<200 pc) jet. The dust emission is unlikely to be dominant, as the mm-wave slope is generally flatter than expected. Also, due to no increase in the mm-wave luminosity with the Eddington ratio, a radiation-driven outflow model is possibly not the common mechanism Furthermore, we find independence of the mm-wave luminosity on indicators of the inclination angle from the polar axis of the nuclear structure, which is inconsistent with a jet model whose luminosity depends only on the angle.
- ItemBASS XXXIX: Swift-BAT AGN with changing-look optical spectra(2023) Temple, Matthew J.; Ricci, Claudio; Koss, Michael J.; Trakhtenbrot, Benny; Bauer, Franz E.; Mushotzky, Richard; Rojas, Alejandra F.; Caglar, Turgay; Harrison, Fiona; Oh, Kyuseok; Gonzalez, Estefania Padilla; Powell, Meredith C.; Ricci, Federica; Riffel, Rogerio; Stern, Daniel; Urry, C. MeganChanging-look (CL) AGN are unique probes of accretion onto supermassive black holes (SMBHs), especially when simultaneous observations in complementary wavebands allow investigations into the properties of their accretion flows. We present the results of a search for CL behaviour in 412 Swift-BAT detected AGN with multiple epochs of optical spectroscopy from the BAT AGN Spectroscopic Survey (BASS). 125 of these AGN also have 14-195 keV ultra-hard X-ray light curves from Swift-BAT which are contemporaneous with the epochs of optical spectroscopy. Eight CL events are presented for the first time, where the appearance or disappearance of broad Balmer line emission leads to a change in the observed Seyfert type classification. Combining with known events from the literature, 21 AGN from BASS are now known to display CL behaviour. Nine CL events have 14-195 keV data available, and five of these CL events can be associated with significant changes in their 14-195 keV flux from BAT. The ultra-hard X-ray flux is less affected by obscuration and so these changes in the 14-195 keV band suggest that the majority of our CL events are not due to changes in line-of-sight obscuration. We derive a CL rate of 0.7-6.2 per cent on 10-25 yr time-scales, and show that many transitions happen within at most a few years. Our results motivate further multiwavelength observations with higher cadence to better understand the variability physics of accretion onto SMBHs.
- ItemBASS-XL: X-ray variability properties of unobscured active galactic nuclei(2023) Tortosa, Alessia; Ricci, Claudio; Arevalo, Patricia; Koss, Michael J.; Bauer, Franz E.; Trakhtenbrot, Benny; Mushotzky, Richard; Temple, Matthew J.; Ricci, Federica; Lilayu, Alejandra Rojas; Kawamuro, Taiki; Caglar, Turgay; Liu, Tingting; Harrison, Fiona; Oh, Kyuseok; Powell, Meredith Clark; Stern, Daniel; Urry, Claudia MeganWe investigate the X-ray variability properties of Seyfert 1 Galaxies belonging to the BAT AGN Spectroscopic Survey (BASS). The sample includes 151 unobscured (N-H < 10(22) cm(-2)) AGNs observed with XMM-Newton for a total exposure time of similar to 27 ms, representing the deepest variability study done so far with high signal-to-noise XMM-Newton observations, almost doubling the number of observations analysed in previous works. We constrain the relation between the normalized excess variance and the 2-10 keV AGN luminosities, black hole masses, and Eddington ratios. We find a highly significant correlation between sigma(2)(NXS) and M-BH, with a scatter of similar to 0.85 dex. For sources with high L2-10 this correlation has a lower normalization, confirming that more luminous (higher mass) AGNs show less variability. We explored the sigma(2)(NXS) versus M-BH relation for the sub-sample of sources with M-BH estimated via the 'reverberation mapping' technique, finding a tighter anticorrelation, with a scatter of similar to 0.65 dex. We examine how the sigma(2)(NXS) changes with energy by studying the relation between the variability in the hard (3-10 keV) and the soft (0.2-1 keV)/medium (1-3 keV) energy bands, finding that the spectral components dominating the hard energy band are more variable than the spectral components dominating in softer energy bands, on time-scales shorter than 10 ks.
- ItemBASS. XXIV. The BASS DR2 Spectroscopic Line Measurements and AGN Demographics(2022) Oh, Kyuseok; Koss, Michael J.; Ueda, Yoshihiro; Stern, Daniel; Ricci, Claudio; Trakhtenbrot, Benny; Powell, Meredith C.; den Brok, Jakob S.; Lamperti, Isabella; Mushotzky, Richard; Ricci, Federica; Bar, Rudolf E.; Rojas, Alejandra F.; Ichikawa, Kohei; Riffel, Rogerio; Treister, Ezequiel; Harrison, Fiona; Urry, C. Megan; Bauer, Franz E.; Schawinski, KevinWe present the second catalog and data release of optical spectral line measurements and active galactic nucleus (AGN) demographics of the BAT AGN Spectroscopic Survey, which focuses on the Swift-BAT hard X-ray detected AGNs. We use spectra from dedicated campaigns and publicly available archives to investigate spectral properties of most of the AGNs listed in the 70 month Swift-BAT all-sky catalog; specifically, 743 of the 746 unbeamed and unlensed AGNs (99.6%). We find a good correspondence between the optical emission line widths and the hydrogen column density distributions using the X-ray spectra, with a clear dichotomy of AGN types for N (H) = 10(22) cm(-2). Based on optical emission-line diagnostics, we show that 48%-75% of BAT AGNs are classified as Seyfert, depending on the choice of emission lines used in the diagnostics. The fraction of objects with upper limits on line emission varies from 6% to 20%. Roughly 4% of the BAT AGNs have lines too weak to be placed on the most commonly used diagnostic diagram, [O iii]lambda 5007/H beta versus [N ii]lambda 6584/H alpha, despite the high signal-to-noise ratio of their spectra. This value increases to 35% in the [O iii]lambda 5007/[O ii]lambda 3727 diagram, owing to difficulties in line detection. Compared to optically selected narrow-line AGNs in the Sloan Digital Sky Survey, the BAT narrow-line AGNs have a higher rate of reddening/extinction, with H alpha/H beta > 5 (similar to 36%), indicating that hard X-ray selection more effectively detects obscured AGNs from the underlying AGN population. Finally, we present a subpopulation of AGNs that feature complex broad lines (34%, 250/743) or double-peaked narrow emission lines (2%, 17/743).
- ItemBASS. XXIX. The Near-infrared View of the Broad-line Region (BLR): The Effects of Obscuration in BLR Characterization(2022) Ricci, Federica ; Treister, Ezequiel ; Bauer, Franz E.; Mejía-Restrepo, Julian E. ; Koss, Michael J. ; den Brok, Jakob S. ; Baloković, Mislav ; Bär, Rudolf ; Bessiere, Patricia ; Caglar, Turgay ; Harrison, Fiona ; Ichikawa, Kohei ; Kakkad, Darshan; Lamperti, Isabella ; Mushotzky, Richard ; Oh, Kyuseok ; Powell, Meredith C. ; Privon, George C. ; Ricci, Claudio ; Riffel, Rogerio ; Rojas, Alejandra F. ; Sani, Eleonora ; Smith, Krista L. ; Stern, Daniel ; Trakhtenbrot, Benny ; Urry, C. Megan ; Veilleux, Sylvain
- ItemBASS. XXVI. DR2 Host Galaxy Stellar Velocity Dispersions(2022) Koss, Michael J.; Trakhtenbrot, Benny; Ricci, Claudio; Oh, Kyuseok; Bauer, Franz E.; Stern, Daniel; Caglar, Turgay; den Brok, Jakob S.; Mushotzky, Richard; Ricci, Federica; Mejia-Restrepo, Julian E.; Lamperti, Isabella; Treister, Ezequiel; Baer, Rudolf E.; Harrison, Fiona; Powell, Meredith C.; Privon, George C.; Riffel, Rogerio; Rojas, Alejandra F.; Schawinski, Kevin; Urry, C. MeganWe present new central stellar velocity dispersions for 484 Sy 1.9 and Sy 2 from the second data release of the Swift/BAT AGN Spectroscopic Survey (BASS DR2). This constitutes the largest study of velocity dispersion measurements in X-ray-selected obscured active galactic nuclei (AGN) with 956 independent measurements of the Ca ii H and K lambda 3969, 3934 and Mg I lambda 5175 region (3880-5550 angstrom) and the calcium triplet region (8350-8730 angstrom) from 642 spectra mainly from VLT/X-Shooter or Palomar/DoubleSpec. Our sample spans velocity dispersions of 40-360 km s(1), corresponding to 4-5 orders of magnitude in black hole mass (M (BH) = 10(5.5-9.6) M (circle dot)), bolometric luminosity (L (bol) similar to 10(42-46) erg s(-1)), and Eddington ratio (L/L (Edd) similar to 10(-5) to 2). For 281 AGN, our data and analysis provide the first published central velocity dispersions, including six AGN with low-mass black holes (M (BH) = 10(5.5-6.5) M (circle dot)), discovered thanks to high spectral resolution observations (sigma (inst) similar to 25 km s(-1)). The survey represents a significant advance with a nearly complete census of velocity dispersions of hard X-ray-selected obscured AGN with measurements for 99% of nearby AGN (z < 0.1) outside the Galactic plane ( divide b divide > 10 degrees). The BASS AGN have much higher velocity dispersions than the more numerous optically selected narrow-line AGN (i.e., similar to 150 versus similar to 100 km s(-1)) but are not biased toward the highest velocity dispersions of massive ellipticals (i.e., >250 km s(-1)). Despite sufficient spectral resolution to resolve the velocity dispersions associated with the bulges of small black holes (similar to 10(4-5) M (circle dot)), we do not find a significant population of super-Eddington AGN. Using estimates of the black hole sphere of influence from velocity dispersion, direct stellar and gas black hole mass measurements could be obtained with existing facilities for more than similar to 100 BASS AGN.
- ItemBASS. XXVIII. Near-infrared Data Release 2: High-ionization and Broad Lines in Active Galactic Nuclei(2022) den Brok, Jakob S.; Koss, Michael J.; Trakhtenbrot, Benny; Stern, Daniel; Cantalupo, Sebastiano; Lamperti, Isabella; Ricci, Federica; Ricci, Claudio; Oh, Kyuseok; Bauer, Franz E.; Riffel, Rogerio; Rodriguez-Ardila, Alberto; Baer, Rudolf; Harrison, Fiona; Ichikawa, Kohei; Mejia-Restrepo, Julian E.; Mushotzky, Richard; Powell, Meredith C.; Boissay-Malaquin, Rozenn; Stalevski, Marko; Treister, Ezequiel; Urry, C. Megan; Veilleux, SylvainWe present the BAT AGN Spectroscopic Survey (BASS) Near-infrared Data Release 2 (DR2), a study of 168 nearby ((z) over bar = 0.04, z < 0.6) active galactic nuclei (AGN) from the all-sky Swift Burst Array Telescope X-ray survey observed with the Very Large Telescope (VLT)/X-shooter in the near-infrared (NIR; 0.8-2.4 mu m). We find that 49/109 (45%) Seyfert 2 and 35/58 (60%) Seyfert 1 galaxies observed with VLT/X-shooter show at least one NIR high-ionization coronal line (CL; ionization potential chi > 100 eV). Comparing the emission of the [Si VI] lambda 1.9640 CL with the X-ray emission for the DR2 AGN, we find a significantly tighter correlation, with a lower scatter (0.37 dex) than that for the optical [O III] lambda 5007 line (0.71 dex). We do not find any correlation between CL emission and the X-ray photon index Gamma. We find a clear trend of line blueshifts with increasing ionization potential in several CLs, such as [Si VI] lambda 1.9640, [Si X] lambda 1.4300, [S VIII] lambda 0.9915, and [S IX] lambda 1.2520, indicating the radial structure of the CL region. Finally, we find a strong underestimation bias in black hole mass measurements of Sy 1.9 using broad H alpha due to the presence of significant dust obscuration. In contrast, the broad Pa alpha and Pa beta emission lines are in agreement with the M-sigma relation. Based on the combined DR1 and DR2 X-shooter sample, the NIR BASS sample now comprises 266 AGN with rest-frame NIR spectroscopic observations, the largest set assembled to date.
- ItemChandra Observations of Excess Fe Kα Line Emission in Galaxies with High Star Formation Rates: X-Ray Reflection on Galaxy Scales?(2021) Yan, Wei; Hickox, Ryan C.; Chen, Chien-Ting J.; Ricci, Claudio; Masini, Alberto; Bauer, Franz E.; Alexander, David M.In active galactic nuclei (AGNs), fluorescent Fe K alpha (iron) line emission is generally interpreted as originating from obscuring material around a supermassive black hole on the scale of a few parsecs. However, recent Chandra studies indicate the existence of iron line emission extending to kiloparsec scales in the host galaxy. The connection between iron line emission and large-scale material can be spatially resolved directly only in nearby galaxies, but could be inferred in more distant AGNs by a connection between line emission and star-forming gas and dust that is more extended than the parsec-scale torus. Here we present the results from a stacking analysis and X-ray spectral fitting performed on sources in the Chandra Deep Field South (CDFS) 7 Ms observations. From the deep stacked spectra, we select sources with stellar mass log(M-*/M-circle dot) > 10 at 0.5 < z < 2, obtaining 25 sources with high-infrared (IR) luminosity (star formation rate, SFRFIR >= 17 M-circle dot yr(-1)) and 32 sources below this threshold. We find that the equivalent width (EW) of the iron line EW(Fe) is a factor of three higher with 3 sigma significance for high-IR luminosity measured from Herschel observations, indicating a connection between iron line emission and star-forming material on galaxy scales. We show that there is no significant dependence of the EW(Fe) on M-* or X-ray luminosity, suggesting that the reflection of AGN X-ray emission over large scales in their host galaxies may be widespread.
- ItemCompact Molecular Gas Distribution in Quasar Host Galaxies(2021) Molina, Juan ; Wang, Ran ; Shangguan, Jinyi ; Ho, Luis C. ; Bauer, Franz E. ; Treister, Ezequiel ; Shao, YaliWe use Atacama Large Millimeter/submillimeter Array CO (2-1) observations of six low-redshift Palomar-Green quasars to study the distribution and kinematics of the molecular gas of their host galaxies at kiloparsec-scale resolution. While the molecular gas content, molecular gas fraction, and star formation rates are similar to those of nearby massive, star-forming galaxies, the quasar host galaxies possess exceptionally compact, disky molecular gas distributions with a median half-light radius of 1.8 kpc and molecular gas mass surface densities greater than or similar to 22 M pc(-2). While the overall velocity field of the molecular gas is dominated by regular rotation out to large radii, with ratio of rotation velocity to velocity dispersion greater than or similar to 9, the nuclear region displays substantial kinematic complexity associated with small-scale substructure in the gas distribution. A tilted-ring analysis reveals that the kinematic and photometric position angles are misaligned on average by similar to 34 degrees 26 degrees and provides evidence of kinematic twisting. These observations provide tantalizing clues to the detailed physical conditions of the circumnuclear environments of actively accreting supermassive black holes.
- ItemDeep Learning Identification of Galaxy Hosts in Transients (DELIGHT)(2022) Forster, Francisco; Muñoz Arancibia, Alejandra M.; Reyes, Ignacio; Gagliano, Alexander; Britt, Dylan J.; Cuellar-Carrillo, Sara; Figueroa-Tapia, Felipe; Polzin, Ava; Yousef, Yara; Arredondo, Javier; Rodríguez-Mancini, Diego; Correa-Orellana, Javier; Bayo, Amelia; Bauer, Franz E.; Catelan, Márcio; Cabrera-Vives, Guillermo; Dastidar, Raya; Estévez, Pablo A.; Pignata, Giuliano; Hernández-Garcia, Lorena; Huijse, Pablo; Reyes, Esteban; Sánchez-Sáez, Paula; Ramírez, Mauricio; Grandón, Daniela; Pineda-García, Jonathan; Chabour-Barra, Francisca; Silva-Farfán, JavierThe Deep Learning Identification of Galaxy Hosts in Transients (DELIGHT, Förster et al. 2022, submitted) is a library created by the ALeRCE broker to automatically identify host galaxies of transient candidates using multi-resolution images and a convolutional neural network (you can test it with our example notebook, that you can run in Colab). The initial idea for DELIGHT started as a project proposed for the La Serena School of Data Science in 2021. You can install it using pip install astro-delight, but we recommend cloning this repository and pip install . from there. The library has a class with several methods that allow you to get the most likely host coordinates starting from given transient coordinates. In order to do this, the delight object needs a list of object identifiers and coordinates (oid, ra, dec). With this information, it downloads PanSTARRS images centered around the position of the transients (2 arcmin x 2 arcmin), gets their WCS solutions, creates the multi-resolution images, does some extra preprocessing of the data, and finally predicts the position of the hosts using a multi-resolution image and a convolutional neural network. It can also estimate the host's semi-major axis if requested taking advantage of the multi-resolution images. Note that DELIGHT's prediction time is currently dominated by the time to download PanSTARRS images using the panstamps service. In the future, we expect that there will be services that directly provide multi-resolution images, which should be more lightweight with no significant loss of information. Once these images are obtained, the processing times are only milliseconds per host. If you cannot install some of the dependencies, e.g. tensorflow, you can try running DELIGHT directly from Google Colab (test in this link). Github link: https://github.com/fforster/delight PyPi link: https://pypi.org/project/astro-delight/...
- ItemDELIGHT: Deep Learning Identification of Galaxy Hosts of Transients using Multiresolution Images(2022) Förster, Francisco; Muñoz Arancibia, Alejandra M.; Reyes-Jainaga, Ignacio; Gagliano, Alexander; Britt, Dylan; Cuellar-Carrillo, Sara; Figueroa-Tapia, Felipe; Polzin, Ava; Yousef, Yara; Arredondo, Javier; Rodríguez-Mancini, Diego; Correa-Orellana, Javier; Bayo, Amelia; Bauer, Franz E.; Catelan, Márcio; Cabrera-Vives, Guillermo; Dastidar, Raya; Estévez, Pablo A.; Pignata, Giuliano; Hernández-García, Lorena; Huijse, Pablo; Reyes, Esteban; Sánchez-Sáez, Paula; Ramírez, Mauricio; Grandón, Daniela; Pineda-García, Jonathan; Chabour-Barra, Francisca; Silva-Farfán, JavierWe present DELIGHT, or Deep Learning Identification of Galaxy Hosts of Transients, a new algorithm designed to automatically and in real time identify the host galaxies of extragalactic transients. The proposed algorithm receives as input compact, multiresolution images centered at the position of a transient candidate and outputs two-dimensional offset vectors that connect the transient with the center of its predicted host. The multiresolution input consists of a set of images with the same number of pixels, but with progressively larger pixel sizes and fields of view. A sample of 16,791 galaxies visually identified by the Automatic Learning for the Rapid Classification of Events broker team was used to train a convolutional neural network regression model. We show that this method is able to correctly identify both relatively large (10″ < r < 60″) and small (r ≤ 10″) apparent size host galaxies using much less information (32 kB) than with a large, single-resolution image (920 kB). The proposed method has fewer catastrophic errors in recovering the position and is more complete and has less contamination (<0.86%) recovering the crossmatched redshift than other state-of-the-art methods. The more efficient representation provided by multiresolution input images could allow for the identification of transient host galaxies in real time, if adopted in alert streams from new generation of large -etendue telescopes such as the Vera C. Rubin Observatory....
- ItemDynamics of Molecular Gas in the Central Region of the Quasar I Zwicky 1(2023) Fei, Qinyue; Wang, Ran; Molina, Juan; Shangguan, Jinyi; Ho, Luis C.; Bauer, Franz E.; Treister, EzequielWe present a study of the molecular gas distribution and kinematics in the cicumnuclear region (radii less than or similar to 2 kpc) of the z approximate to 0.061 quasar I Zwicky 1 using a collection of available Atacama Large Millimeter/submillimeter Array observations of the carbon monoxide (CO) emission. With an angular resolution of similar to 0.'' 36 (corresponding to similar to 400 pc), the host-galaxy substructures including the nuclear molecular gas disk, spiral arms, and a compact bar-like component are resolved. We analyzed the gas kinematics based on the CO image cube and obtained the rotation curve and radial distribution of velocity dispersion. The velocity dispersion is about 30 km s(-1) in the outer CO disk region and rises up to greater than or similar to 100 km s(-1) at radius less than or similar to 1 kpc, suggesting that the central region of the disk is dynamically hot. We constrain the CO-to-H-2 conversion factor, alpha(CO), by modeling the cold gas disk dynamics. We find that, with prior knowledge about the stellar and dark matter components, the alpha(CO) value in the circumnuclear region of this quasar host galaxy is 1.55(-0.49)(+0.47) M-circle dot (K km s(-1) pc(2))(-1), which is between the value reported in ultraluminous infrared galaxies and in the Milky Way. The central 1 kpc region of this quasar host galaxy has significant star formation activity, which can be identified as a nuclear starburst. We further investigate the high-velocity dispersion in the central region. We find that the interstellar medium (ISM) turbulent pressure derived from the gas velocity dispersion is in equilibrium with the weight of the ISM. This argues against extra power from active galactic nuclei feedback that significantly affects the kinematics of the cold molecular gas.
- ItemEnhanced Star Formation Efficiency in the Central Regions of Nearby Quasar Hosts(2023) Molina, Juan; Ho, Luis C.; Wang, Ran; Shangguan, Jinyi; Bauer, Franz E.; Treister, EzequielWe combine Atacama Large Millimeter/submillimeter Array and Multi Unit Spectroscopic Explorer observations tracing the molecular gas, millimeter continuum, and ionized gas emission in six low-redshift (z less than or similar to 0.06) Palomar-Green (PG) quasar host galaxies to investigate their ongoing star formation at roughly kiloparsec-scale resolution. The AGN contribution to the cold dust emission and the optical emission-line flux is carefully removed to derive spatial distributions of the star formation rate (SFR), which, complemented with the molecular gas data, enables the mapping of the depletion time (t (dep)). We report ubiquitous star formation activity within the quasar host galaxies, with the majority of the ongoing star formation occurring in the galactic center. The rise of the SFR surface density (sigma(SFR)) toward the nucleus is steeper than that observed for the cold molecular gas surface density, reaching values up to sigma(SFR) approximate to 0.15-0.80 M (circle dot) yr(-1) kpc(-2). The gas in the nuclear regions is converted into stars at a shortened depletion time (t (dep) approximate to 0.2-2.0 Gyr), suggesting that those zones can be deemed as starbursts. At large galactocentric radius, we find that the ongoing star formation takes place within spiral arms or H ii region complexes, with an efficiency comparable to that reported for nearby inactive spirals (t (dep) approximate to 1.8 Gyr). We find no evidence of star formation activity shutoff in the PG quasar host galaxies. On the contrary, these observations shed light on how the central environments of galaxies hosting actively accreting supermassive black holes build up stellar mass.
- «
- 1 (current)
- 2
- 3
- »