Arithmetic of Drinfeld modules

dc.contributor.advisorPasten Vásquez, Héctor Hardy
dc.contributor.authorAlvarado Torres, Matías Nicolás
dc.contributor.otherPontificia Universidad Católica de Chile. Facultad de Matemáticas
dc.date.accessioned2025-07-01T14:05:08Z
dc.date.available2025-07-01T14:05:08Z
dc.date.issued2025
dc.date.updated2025-06-28T00:00:59Z
dc.descriptionTesis (Doctor en Matemática)--Pontificia Universidad Católica de Chile, 2023
dc.description.abstractDrinfeld modules, introduced by Vladimir Drinfeld in the 1970s, have become acornerstone in the arithmetic of global function fields. These objects serve as thefunction field analogues of elliptic curves and abelian varieties, but with a structure thatis uniquely adapted to the arithmetic of positive characteristic. Defined over rings offunctions rather than number fields, Drinfeld modules allow for the development of arich arithmetic theory that mirrors, and in many ways extends, the classical theory ofelliptic curves. Their moduli spaces, Galois representations, and associated L-functionshave all been studied extensively, revealing deep analogies with the number field caseand offering new phenomena unique to the function field setting. From an arithmeticstandpoint, Drinfeld modules provide explicit realizations of class field theory for globalfunction fields, particularly through the theory of Hayes modules and the use of shtukas.They give rise to Galois representations whose image and ramification behavior encodesignificant arithmetic information. Moreover, the theory of heights and canonical measuresassociated with Drinfeld modules has led to important results in Diophantine geometry,such as analogues of the Mordell-Weil theorem and the Bogomolov conjecture in positivecharacteristic. Beyond their arithmetic significance, Drinfeld modules also exhibit a richdynamical structure.
dc.fechaingreso.objetodigital2025-07-01
dc.format.extent79 páginas
dc.fuente.origenAutoarchivo
dc.identifier.doi10.7764/tesisUC/MAT/104798
dc.identifier.urihttps://doi.org/10.7764/tesisUC/MAT/104798
dc.identifier.urihttps://repositorio.uc.cl/handle/11534/104798
dc.information.autorucFacultad de Matemáticas; Alvarado Torres, Matías Nicolás; S/I; 1132038
dc.information.autorucFacultad de Matemáticas; Pasten Vásquez, Héctor Hardy; 0000-0002-7789-8459; 1080628
dc.language.isoen
dc.nota.accesocontenido completo
dc.rightsacceso abierto
dc.rights.licenseAtribución 4.0 Internacional (CC BY 4.0)
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/deed.es
dc.subject.ddc510
dc.subject.deweyMatemática física y química
dc.titleArithmetic of Drinfeld modules
dc.typetesis doctoral
sipa.codpersvinculados1132038
sipa.codpersvinculados1080628
Files
Original bundle
Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
Thesis_4.pdf
Size:
721.7 KB
Format:
Adobe Portable Document Format
Description:
Loading...
Thumbnail Image
Name:
Declaración de Resultados de Investigación.txt
Size:
2.54 KB
Format:
Plain Text
Description:
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.98 KB
Format:
Item-specific license agreed upon to submission
Description: