The Generalized Torelli Problem through the geometry of the Gauss map
| dc.catalogador | gjm | |
| dc.contributor.advisor | Auffarth, Robert | |
| dc.contributor.author | Rahausen Rodríguez, Sebastián Andrés | |
| dc.contributor.other | Pontificia Universidad Católica de Chile. Facultad de Matemáticas | |
| dc.date.accessioned | 2024-07-23T15:10:54Z | |
| dc.date.available | 2024-07-23T15:10:54Z | |
| dc.date.issued | 2024 | |
| dc.date.updated | 2024-07-19T22:28:09Z | |
| dc.description | Tesis (Doctor en Matemática)--Pontificia Universidad Católica de Chile, 2024. | |
| dc.description.abstract | Given a non-hyperelliptic curve C of genus g and 1<n<g-1, in this work we prove that the generic fiber of the Gauss map on W_n has one element and we characterize its multiple locus. Assuming that C doesn't have a linear system of dimension k+1 and degree n+k+1, for 0<k<n<g-1, we solve the problem of reconstructing each linear system of dimension k and degree n+k, and the dual hypersurface of the image of its associated morphism, through information encoded in the Gauss map. For this purpose we introduce the notion of (n+k)-intersection loci and we study their dimensions. In the hyperelliptic case we prove that the image of the Gauss map is a union of sets whose closures are birational to their complete linear systems of dimension k and degree n+k, for each 0<k<n+1<g+1, and that these also contain a copy of the dual hypersurface of the image of its associated morphism. From the case k=n we deduce that the closure of the image of the Gauss map is birational to the n-dimensional projective space.We also prove the existence of points in W_n such that their images on the Kummer variety of their Jacobian aren't in general position, i.e., they lie on a multisecant. For this purpose we use the Gunning multisecant formula. We then study some relations between these multisecant points and the Gauss map on W_n, in both cases non-hyperelliptic and hyperelliptic. | |
| dc.fechaingreso.objetodigital | 2024-07-23 | |
| dc.format.extent | iv, 73 páginas | |
| dc.fuente.origen | Autoarchivo | |
| dc.identifier.doi | 10.7764/tesisUC/MAT/87208 | |
| dc.identifier.uri | https://doi.org/10.7764/tesisUC/MAT/87208 | |
| dc.identifier.uri | https://repositorio.uc.cl/handle/11534/87208 | |
| dc.information.autoruc | Facultad de Matemáticas; Auffarth, Robert; S/I; 162672 | |
| dc.information.autoruc | Facultad de Matemáticas; Rahausen Rodríguez, Sebastián Andrés; S/I; 1092442 | |
| dc.language.iso | en | |
| dc.nota.acceso | contenido completo | |
| dc.rights | acceso abierto | |
| dc.rights.license | Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) | |
| dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0/deed.es | |
| dc.subject.ddc | 510 | |
| dc.subject.dewey | Matemática física y química | es_ES |
| dc.title | The Generalized Torelli Problem through the geometry of the Gauss map | |
| dc.type | tesis doctoral | |
| sipa.codpersvinculados | 162672 | |
| sipa.codpersvinculados | 1092442 |
